Skip to main content Accessibility help
×
Home

UNIVALENCE CRITERIA AND ANALOGUES OF THE JOHN CONSTANT

  • YONG CHAN KIM (a1) and TOSHIYUKI SUGAWA (a2)

Abstract

Let $p(z)= z{f}^{\prime } (z)/ f(z)$ for a function $f(z)$ analytic on the unit disc $\mid z\mid \lt 1$ in the complex plane and normalised by $f(0)= 0, {f}^{\prime } (0)= 1$ . We provide lower and upper bounds for the best constants ${\delta }_{0} $ and ${\delta }_{1} $ such that the conditions ${e}^{- {\delta }_{0} / 2} \lt \mid p(z)\mid \lt {e}^{{\delta }_{0} / 2} $ and $\mid p(w)/ p(z)\mid \lt {e}^{{\delta }_{1} } $ for $\mid z\mid , \mid w\mid \lt 1$ respectively imply univalence of $f$ on the unit disc.

Copyright

Corresponding author

References

Hide All
[1]Becker, J., ‘Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen’, J. reine angew. Math. 255 (1972), 2343.
[2]Curtiss, J. H., ‘Polynomials and the Faber series’, Amer. Math. Monthly 78 (1971), 577596.
[3]Gevirtz, J., ‘An upper bound for the John constant’, Proc. Amer. Math. Soc. 83 (1981), 476478.
[4]Gevirtz, J., ‘On extremal functions for John constants’, J. Lond. Math. Soc. (2) 39 (1989), 285298.
[5]Hummel, J. A., ‘The Grunsky coefficients of a schlicht function’, Proc. Amer. Math. Soc. 15 (1964), 142150.
[6]Jabotinsky, E., ‘Universal relations between the elements of Grunsky’s matrix’, J. Anal. Math. 17 (1966), 411417.
[7]John, F., ‘On quasi-isometric mappings, II’, Comm. Pure Appl. Math. 22 (1969), 265278.
[8]Kim, Y. C., Ponnusamy, S. and Sugawa, T., ‘Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives’, J. Math. Anal. Appl. 299 (2004), 433447.
[9]Kim, Y. C. and Sugawa, T., ‘On univalence of the power deformation $z\mathop{(f(z)/ z)}\nolimits ^{c} $’, Chinese Ann. Math. Ser. B. arXiv:1112.6237.
[10]Pommerenke, Ch., Univalent Functions (Vandenhoeck & Ruprecht, Göttingen, 1975).
[11]Todorov, P. G., ‘Three explicit formulas for the Taylor coefficients of the function $\mathop{(\frac{1- z}{1- xz} )}\nolimits ^{\lambda } $’, Abh. Math. Semin Univ. Hamb. 65 (1995), 147153.
[12]Yamashita, S., ‘On the John constant’, Math. Z. 161 (1978), 185188.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed