Skip to main content
×
Home
    • Aa
    • Aa

ON A PROBLEM OF BROCARD

  • ALEXANDRU GICA (a1) and LAURENŢIU PANAITOPOL (a1)
Abstract

It is proved that, if $P$ is a polynomial with integer coefficients, having degree 2, and $1>\varepsilon>0$, then $n(n-1)\cdots(n-k+1)=P(m)$ has only finitely many natural solutions $(m,n,k)$, $n\ge k>n\varepsilon$, provided that the $abc$ conjecture is assumed to hold under Szpiro's formulation.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the London Mathematical Society
  • ISSN: 0024-6093
  • EISSN: 1469-2120
  • URL: /core/journals/bulletin-of-the-london-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.