Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-04T09:46:50.777Z Has data issue: false hasContentIssue false

ASSOCIATION OF PHYTOPATHOGENIC FUNGI FOR THE SCOTS PINE (PINUS SYLVESTRIS L.) WITH THE EUROPEAN PINE WEEVIL HYLOBIUS ABIETIS (L.) (COL. CURCULIONIDAE)

Published online by Cambridge University Press:  31 May 2012

J. Lévieux
Affiliation:
L.A. INRA, Université Orléans, 45067 Orléans Cedex 2, France — E.N.G.R.E.F., Domaine des Barres, 45290 Nogent sur Vernisson-France
D. Piou
Affiliation:
L.A. INRA, Université Orléans, 45067 Orléans Cedex 2, France — E.N.G.R.E.F., Domaine des Barres, 45290 Nogent sur Vernisson-France
P. Cassier
Affiliation:
Université Paris VI, Cytophysiologie des Arthropodes, 105 Bd Raspail, 75006 Paris, France
M. André
Affiliation:
Université Paris VI, Cytophysiologie des Arthropodes, 105 Bd Raspail, 75006 Paris, France
D. Guillaumin
Affiliation:
Université Paris VI, Cytophysiologie des Arthropodes, 105 Bd Raspail, 75006 Paris, France

Abstract

In 1989 and 1990, the contamination rate of the European pine weevil Hylobius abietis (L.) by several pathogenic fungi for the Scots pine was measured [Leptographium procerum (Kendrick) Wingf. — 45% of the specimens; Pachnodium canum (Upadh. and Kendr.) — 14%; or Ophiostoma piliferum (Fries) H. and P. Syd — 3% (Piou 1993)]. To understand the processes of transportation, a detailed study was conducted by scanning electron microscopy. Several types of spores vectored are found mainly in the thoracic cuticular rounded wells located near the sensorial setae. These wells are connected with an epidermal glandular apparatus whose ultrastructural description is given. We question the origin and composition of these secretions which are believed to protect the spores and contribute to the infection process.

Résumé

En 1989 et 1990, on a mesuré en Forêt d’Orléans (France) le taux de contamination du charançon européen Hylobius abietis (L.) par plusieurs champignons phytopathogènes comme Leptographium procerum (Kendrick) Wingf. — 45% des individus; Pachnodium canum (Upadh. et Kendr.) — 14%; et Ophiostoma piliferum (Fries) H. et P. Syd — 3% (Piou 1993). L’étude du mode de transport des spores par l’insecte montre que celui ci s’effectue préférentiellement dans de nombreuses dépressions cuticulaires thoraciques voisines des soies sensorielles. Comme chez les scolytes, chaque dépression communique avec un système glandulaire de nature épidermique dont la description est donnée. On s’interroge pour savoir si les sécrétions de ces glandes pourraient servir à protéger les champignons ou aider à leur développement lors du transport ou de l’inoculation.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, S.A., Horner, W.E., and Lewis, K.J.. 1988. Leptographium procerum as a pathogen of pines. pp. 97–102 in Harrington, T.C., and Cobb, F.W. (Eds.), Leptographium Root Diseases on Conifers. A.P.S. Press, St. Paul, MN. 149 pp.Google Scholar
Barras, S.J., and Perry, T.. 1971. Gland cells and fungi associated with prothoracic mycangium of Dendroctonus adjunctus (Col. Scolytidae). Annals of the Entomological Society of America 64: 123126.CrossRefGoogle Scholar
Barras, S.J., and Perry, T.. 1972. Fungal symbionts in the prothoracic mycangium of Dendroctonus frontalis (Col. Scolytidae). Zeitschrift für angewandte Entomologie 71: 95104.CrossRefGoogle Scholar
Beaver, R.A. 1989. Insect fungus relationships in the bark and ambrosia beetles. pp. 121–143 in Wilding, N., Collins, N.M., Hammond, P.M., and Weber, F.J. (Eds.), Insect–Fungus Interactions. Academic Press, New York, NY. 344 pp.Google Scholar
Berryman, A.A. 1989. Adaptative pathways in Scolytid–Fungus associations. pp. 143–159 in Wilding, N., Collins, N.M., Hammond, P.M., and Weber, J.F. (Eds.), Insect–Fungus Interactions. Academic Press, New York, NY. 344 pp.Google Scholar
Bräten, T. 1978. High resolution scanning electron microscopy in biology: Artefacts caused by the nature and mode of application of the coating material. Journal of Microscopy 113: 5359.CrossRefGoogle ScholarPubMed
Cassier, P., Serrant, P., Garcia, R., Coudouel, N., André, M., Guillaumin, D., Porcheron, P., and Oberlander, H.. 1991. Morphological and cytochemical studies on the effects of ecdysteroids in a Lepidopteran cell line (IAL-P1D2). Cell and Tissue Research 265: 361369.CrossRefGoogle Scholar
Eidmann, H.H. 1974. Hylobius Schönh. pp. 275–293 in Die Forstschädlinge Mitteleuropas, II edit. Schwenke, W., Paul Parey, Hamburg-Berlin. 500 pp.Google Scholar
Escherich, K. 1923. Die Forstinsekten Mitteleuropas. Hylobius. pp. 342–380. Zweiter Band, Paul Parey, Berlin. 663 pp.Google Scholar
Francke-Grosmann, H. 1965. Ein symbioseorgan bei dem Borkenkäfer Dendroctonus frontalis Zimmer. (Col. Scol.). Naturwissenchaften 52: 143144.CrossRefGoogle Scholar
Francke-Grosmann, H. 1967. Ectosymbiosis in wood-inhabiting insects. pp. 141–205 in Henry, S.M. (Ed.), Symbiosis, Vol 2. Academic Press, New York, NY. 522 pp.Google Scholar
Furniss, M.L., Solheim, H., and Christiansen, E.. 1990. Transmission of blue stain fungi by Ips typographus (Coleoptera Scolytidae) in Norway spruce. Annals of the Entomological Society of America 83: 712716.CrossRefGoogle Scholar
Gibbs, J.N., and Inman, A.. 1991. The pine shoot beetle Tomicus piniperda as a vector of blue stain fungi to windblown pine. Forestry 64: 239249.CrossRefGoogle Scholar
Harrington, T.C., and Cobb, F.W. Jr., 1983. Pathogenicity of Leptographium and Verticicladiella spp. isolated from roots of Western North American conifers. Phytopathology 73: 596599.CrossRefGoogle Scholar
Kendrick, W.B. 1962. The Leptographium complex. Verticicladiella Hugues. Canadian Journal of Botany 40: 71797.CrossRefGoogle Scholar
Lackner, A.L., and Alexander, S.A.. 1982. Occurrence and pathogenicity of Verticicladiella procera in Christmas tree plantations in Virginia. Plant Diseases 62: 211212.CrossRefGoogle Scholar
Lackner, A.L., and Alexander, S.A. 1984. Incidence and development of Verticicladiella procera in Virginia Christmas tree plantations. Plant Diseases 68: 210212.CrossRefGoogle Scholar
Lévieux, J., Cassier, P., Guillaumin, D., and Roques, A.. 1991. Structures implicated in the transportation of pathogenic fungi by the European bark beetle Ips sexdentatus Boerner: Ultrastructure of a mycangium. The Canadian Entomologist 123: 245254.CrossRefGoogle Scholar
Lévieux, J., Lieutier, F., Moser, J.C., and Perry, T.J.. 1989. Transportation of phytopathogenic fungi by the bark beetle Ips sexdentatus Boerner and associated mites. Journal of Applied Entomology 108: 111.CrossRefGoogle Scholar
Lewis, K.L., and Alexander, S.A., 1986. Insects associated with the transmission of Verticicladiella procera. Canadian Journal of Forest Research 16: 13301333.CrossRefGoogle Scholar
Lieutier, F., Yart, A., Garcia, J., Ham, M. C., Morelet, M., and Lévieux, J.. 1989. Champignons phytopathogènes associés à deux coléoptères Scolytidae du Pin sylvestre (Pinus sylvestris L.) et étude préliminaire de leur agressivité envers l'hôte. Annales des Sciences Forestières 46: 201216.CrossRefGoogle Scholar
Mathiesen-Käärik, A. 1960. Studies on the ecology, taxonomy and physiology of Swedish associated blue stain fungi, especially the genus Ceratocystis. Oikos 1: 125.CrossRefGoogle Scholar
McCall, K.A., and Merrill, W.. 1980. Selective medium for Verticicladiella procera. Plant Diseases 64: 277278.CrossRefGoogle Scholar
Nevill, R.J., and Alexander, S.A.. 1992 a. Transmission of Leptographium procerum to Eastern White pine by Hylobius pales and Pissodes nemorensis (Coleoptera Curculionidae). Plant Diseases 76: 307310.CrossRefGoogle Scholar
Nevill, R.J., and Alexander, S.A.. 1992 b. Distribution of Hylobius pales and Pissodes nemorensis (Coleoptera: Curculionidae) within Christmas tree plantations with procerum root disease. Environmental Entomology 21: 10771083.CrossRefGoogle Scholar
Nevill, R.J., and Alexander, S.A.. 1992 c. Pathogenicity of three fungal associates of Hylobius pales and Pissodes nemorensis (Coleoptera: Curculionidae) to eastern white pine. Canadian Journal of Forest Research 22: 14381440.CrossRefGoogle Scholar
Neville, A.C. 1975. Biology of the Arthopod Cuticle. Springer Verlag, Berlin, New York, NY. 448 pp.CrossRefGoogle Scholar
Noirot, C., and Quennedey, A.. 1974. Fine structure of epidermal glands. Annual Review of Entomology 19: 6180.CrossRefGoogle Scholar
Piou, D. 1993. Rôle d'Hylobius abietis (L) (Col, Curculionidae) dans le transport de Leptographium procerum (Kendr.) Wingf. et son inoculation au Pin sylvestre. Annales des Sciences Forestières 50: 297308.CrossRefGoogle Scholar
Raffa, K.F., and Smalley, E.B.. 1988. Host resistance to invasion by lower stem and root infesting insects of pine: Response to controlled inoculations with the fungal associate Leptographium terebrantis. Canadian Journal of Forest Research 18: 675681.CrossRefGoogle Scholar
Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 17: 208212.CrossRefGoogle ScholarPubMed
Webber, J.F., and Gibbs, J.N.. 1989. Insect dissemination of fungal pathogens of trees. pp. 161–193 in Wilding, G.N., Collins, N.M., Hammon, P.M., and Weber, J.F. (Eds.), Insect Fungus Interactions. Academic Press, New York, NY. 344 pp.Google Scholar
Whitney, H.S. 1982. Relationships between bark-beetles and symbiotic organisms. pp. 183–211 in Mitton, J.B., and Sturgeon, K.B. (Eds.), Bark-beetles in North American Conifers. University of Texas Press, Austin, TX. 527 pp.Google Scholar
Wingfield, M.J. 1983. Association of Verticicladiella procera and Leptographium terebrantis with insects in the Lake States. Canadian Journal of Forest Research 13: 12381245.CrossRefGoogle Scholar
Wingfield, M.J., and Gibbs, J.N.. 1991. Leptographium and Graphium species associated with pine-infesting bark beetles in England. Mycological Research 95: 12571260.CrossRefGoogle Scholar
Witcosky, J.J., Schowalter, T.D., and Hansen, E.M.. 1986. Hylastes nigrinus (Coleoptera Scolytidae), Pissodes fasciatus and Steremnus carinatus (Col. Curculionidae) as vectors of black-stain root disease of Douglas-fir. Environmental Entomology 15: 10901095.CrossRefGoogle Scholar