Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Sinclair, Brent J. 2015. Linking energetics and overwintering in temperate insects. Journal of Thermal Biology, Vol. 54, p. 5.


    Williams, Caroline M. Henry, Hugh A. L. and Sinclair, Brent J. 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, Vol. 90, Issue. 1, p. 214.


    O'Neil, Shawn T. Dzurisin, Jason D. K. Williams, Caroline M. Lobo, Neil F. Higgins, Jessica K. Deines, Jillian M. Carmichael, Rory D. Zeng, Erliang Tan, John C. Wu, Grace C. Emrich, Scott J. and Hellmann, Jessica J. 2014. Gene expression in closely related species mirrors local adaptation: consequences for responses to a warming world. Molecular Ecology, Vol. 23, Issue. 11, p. 2686.


    Williams, CM Hellmann, J and Sinclair, BJ 2012. Lepidopteran species differ in susceptibility to winter warming. Climate Research, Vol. 53, Issue. 2, p. 119.


    Prior, Kirsten M. and Hellmann, Jessica J. 2010. Impact of an invasive oak gall wasp on a native butterfly: a test of plant-mediated competition. Ecology, Vol. 91, Issue. 11, p. 3284.


    Williams, C. M. Pelini, S. L. Hellmann, J. J. and Sinclair, B. J. 2010. Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biology Letters, Vol. 6, Issue. 2, p. 274.


    Pelini, S. L. Dzurisin, J. D. K. Prior, K. M. Williams, C. M. Marsico, T. D. Sinclair, B. J. and Hellmann, J. J. 2009. Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proceedings of the National Academy of Sciences, Vol. 106, Issue. 27, p. 11160.


    ×

Biology of larvae and adults of Erynnis propertius at the northern edge of its range

  • Kirsten M. Prior (a1), Jason D.K. Dzurisin (a1), Shannon L. Pelini (a1) and Jessica J. Hellmann (a1)
  • DOI: http://dx.doi.org/10.4039/n08-019
  • Published online: 01 April 2012
Abstract
Abstract

We describe aspects of the life history of Erynnis propertius (Scudder and Burgess) (Lepidoptera: Hesperiidae) by examining several populations over multiple years. We focused on peripheral populations of this species because they are isolated, are threatened by habitat loss, and may play an important role in driving poleward range expansion under increasing regional temperature. Our findings show that the annual larval growth rate does not vary directly with temperature, adult flight phenology and the timing of key resources respond to average daytime temperatures in spring, and population-density patterns among sites are robust over years across a broad region near the species' northern range limit. In addition, we provide descriptions of all larval instars for this species. This fundamental information about the biology, timing, and abundance of this species will facilitate further experimental study and improved assessment of its conservation status.

Résumé

Nous décrivons des aspects du cycle biologique d'Erynnis propertius (Scudder et Burgess) (Lepidoptera : Hesperiidae) d'après l'étude de diverses populations pendant plusieurs années. Nous nous sommes intéressés aux populations périphériques de l'espèce parce que celles-ci sont isolées et menacées de perdre leur habitat et qu'elles peuvent jouer un rôle important dans l'expansion de l'aire de répartition vers les pôles à cause de l'accroissement de la température régionale. Le taux de croissance annuel des larves ne varie pas directement en fonction de la température; la phénologie de vol des adultes et l'apparition des ressources essentielles réagissent aux températures moyennes de jour du printemps; les patrons de densité de population dans les différents sites sont stables au cours des années dans une large région adjacente à la limite nordique de l'aire de répartition de l'espèce. De plus, nous présentons des descriptions de tous les stades larvaires de l'espèce. Cette information de base sur la biologie, la phénologie et l'abondance de l'espèce permettra de faire des études expérimentales dans le futur et de mieux évaluer son statut de conservation.

[Traduit par la Rédaction]

Copyright
Corresponding author
1Corresponding author (e-mail: hellmann.3@nd.edu).
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K.S. Brown Jr., and A.V.L. Freitas 2000. Atlantic forest butterflies: indicators for landscape conservation. Biotropica, 32: 934956.

H.G. Dyar 1890. The number of molts of lepidopterous larvae. Psyche (Cambridge), 5: 420422.

G.W. Elmes , J.A. Thomas , M.L. Munguira , and K. Fiedler 2001. Larvae of lycaenid butterflies that parasitize ant colonies proved exceptions to normal insect growth rules. Biological Journal of the Linnean Society, 73: 259278.

P. Feeny 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth and caterpillars. Ecology, 51: 565581.

E. Fleishman , and D.D. Murphy 2009. A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conservation Biology. In press.

R.E. Forkner , R.J. Marquis , and J.T. Lill 2004. Feeny revisited: condensed tannins as anti-herbivore defenses in leaf-chewing herbivore communities of Quercus. Ecological Entomology, 29: 174187.

O. Gordo , and J.J. Sanz 2005. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia, 146: 484495.

O. Gordo , and J. Sanz 2006. Temporal trends in phenology of the honeybee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004). Ecological Entomology, 31: 261268.

A. Hamann , and T. Wang 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87: 27732786.

J.J. Hellmann 2002. The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. Journal of Animal Ecology, 71: 925936.

J.J. Hellmann , S.L. Pelini , K.M. Prior , and J.D.K. Dzurisin 2008. The response of two butterfly species to climate variation at the edge of their range and the implications for poleward range shifts. Oecologia, 157: 583592.

A.S. MacDougall , B.R. Beckwith , and C.Y. Maslovat 2004. Defining conservation strategies with historical perspectives: a case study from a degraded oak grassland ecosystem. Conservation Biology, 18: 455465.

M. Murakami , K. Yoshida , H. Hara , and M.J. Toda 2005. Spatio-temporal variation in lepidopteran larval assemblages associated with oak, Quercus crispula: the importance of leaf quality. Ecological Entomology, 30: 521531.

H.F. Nijhout 1975. A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biological Bulletin, 149: 214225.

C. Parmesan , N. Ryrholm , C. Stefanescu , J.K. Hill , C.D. Thomas , H. Descimon , B. Huntley , L. Kaila , J. Kullberg , T. Tammaur , W.J. Tennent , J.A. Thomas , and M. Warren 1999. Poleward shifts in geographical ranges of butterfly species associated with warming. Nature (London), 399: 579583.

S. Pelini , K. Prior , D. Parker , J. Dzurisin , R. Lindroth , and J. Hellmann 2009. Climate change and temporal and spatial mismatches in insect communities. InClimate change: observed impacts on planet earth. Edited byT.M. Letcher . Elsevier, Oxford, United Kingdom. pp. 215231.

E. Pollard 1991. Synchrony of population fluctuations: the dominant influence of widespread factors on local butterfly populations. Oikos, 60: 710.

R. Rothery , and D.B. Roy 2001. Application of generalized additive models to butterfly transect count data. Journal of Applied Statistics, 28: 897909.

D.B. Roy , and T.H. Sparks 2000. Phenology of British butterflies and climate change. Global Change Biology, 6: 407416.

C. Stefanescu , J. Penuelas , and I. Filella 2003. Effects of climate change on the phenology of butterflies in northwest Mediterranean Basin. Global Change Biology, 9: 14941506.

M. van Asch , P.H. van Tienderen , L.J.M. Holleman , and M.E. Visser 2007. Predicting adaption of phenology in response to climate change, an insect herbivore example. Global Change Biology, 13: 15961604.

M. Verdinelli , and G. Sanna-Passino 2003. Development and feeding efficiency of Malacosoma neustrium larvae reared with Quercus spp. leaves. Annals of Applied Biology, 143: 161167.

M.E. Visser , and J.M. Holleman 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London B Biological Sciences, 268: 289294.

I. Zenner-Polania , and R.G. Helgesen 1973. Effect of temperature on instar number and head-capsule width of Platynota stultana (Lepidopetera: Tortricidae). Environmental Entomology, 2: 823828.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×