Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T07:37:42.576Z Has data issue: false hasContentIssue false

C. P. Alexander review1

Thirty-five years of pheromone-based mating disruption studies with Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  01 May 2012

Marc Rhainds*
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, PO Box 4000, Fredericton, New Brunswick E3B 5P7, Canada
Edward G. Kettela
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, PO Box 4000, Fredericton, New Brunswick E3B 5P7, Canada
Peter J. Silk
Affiliation:
Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, PO Box 4000, Fredericton, New Brunswick E3B 5P7, Canada
*
2Corresponding author (e-mail: Marc.Rhainds@NRCan-RNCan.gc.ca).

Abstract

The Canadian registration in 2007 of Disrupt SBW Micro-Flakes®, a pheromone-based product for control of spruce budworm, Choristoneura fumiferana (Clemens), paved the way for large-scale trials to test the practicality of mating disruption as a commercial pest management strategy. We review results from field and laboratory experiments on pheromone-based mating disruption of spruce budworm conducted from 1974 to 2008. Application of pheromone from the ground or the air consistently reduced the orientation of males toward pheromone sources. Mating disruption also reduced the mating success of caged or tethered females in 15 of 16 field studies where this parameter was recorded, but had only a limited effect on the mating success of feral females. No consistent difference in the density of egg masses in control and treated plots was observed, which has often been attributed to immigration of gravid females into pheromone-treated plots. Laboratory studies suggest that false-trail following is the predominant mechanism underlying mating disruption in spruce budworm. The enhanced mating success of females with increasing population density suggests that mating disruption should target low-density emergent populations during the initial phase of an outbreak. Constraints that may limit the potential of mating disruption as a management tool include (1) difficulties associated with obtaining accurate sampling estimates at low population density to forecast the onset of outbreaks, (2) potential behavioral adaptations by which females enhance their mating success when the atmosphere is treated with pheromone, and (3) long-range dispersal of females by flight.

Résumé

L'homologation canadienne en 2007 des micro-flocons Disrupt SBW®, un produit dérivé de phéromones pour la lutte contre la tordeuse des bourgeons de l'épinette, Choristoneura fumiferana (Clemens), a ouvert la voie à des essais à grande échelle pour tester l'utilité pratique de la perturbation de l'accouplement comme stratégie commerciale de lutte intégrée contre les ravageurs. Nous passons en revue ici les résultats des expériences sur le terrain et en laboratoire de perturbation des accouplements à l'aide de phéromones chez la tordeuse des bourgeons de l'épinette de 1974 à 2008. L'épandage de la phéromone au sol ou dans les airs réduit de manière constante l'orientation des mâles vers les sources de phéromone. La perturbation des accouplements a aussi abaissé le succès des accouplements chez des femelles tenues en cage ou en suspension dans 15 des 16 études de terrain dans lesquelles on a tenu compte de cette variable; elle n'a cependant qu'un effet limité sur le succès de l'accouplement de femelles sauvages. On n'observe aucune différence constante dans la densité des masses d'œufs entre les parcelles témoins et expérimentales, ce qui a souvent été attribué à l'immigration de femelles gravides dans les parcelles traitées à la phéromone. Les études en laboratoire indiquent que la poursuite de fausses pistes est le mécanisme principal sous-jacent à la perturbation de l'accouplement chez la tordeuse des bourgeons de l'épinette. L'augmentation du succès de l'accouplement des femelles en fonction de l'accroissement de la densité de la population laisse croire que la perturbation de l'accouplement devrait cibler des populations émergentes de faible densité durant la phase initiale d'une épidémie. Les contraintes qui peuvent limiter le potentiel de la perturbation des accouplements comme outil de gestion incluent (1) la difficulté d'obtenir des estimations justes par échantillonnage aux faibles densités de population afin de prédire le début d'une épidémie, (2) les adaptations comportementales potentielles par lesquelles les femelles augmentent le succès de leurs accouplements lors d'épandages aériens de la phéromone et (3) la dispersion au vol des femelles sur de grandes distances.

Type
Review Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This series is supported by a fund established in memory of the late Charles P. Alexander. The Entomological Society of Canada uses the fund to support the publication of invited articles or reviews on topics that broaden the scope of The Canadian Entomologist and (or) are of current significance to entomology. Cette série est financée par un fond établi à la mémoire de feu Charles P. Alexander. La Société d'entomologie du Canada utilise les fonds afin de supporter la publication d'articles ou de revues sur invitation portant sur des sujets qui élargissent le champ de The Canadian Entomologist et (ou) sont présentement pertinents en entomologie.

References

Alford, A.R., Silk, P.J. 1983. Effect of pheromone-release distribution and release rate on the mating success of spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology, 76: 774778.Google Scholar
Barclay, H.J., Judd, G.J.R. 1995. Models for mating disruption by means of pheromone for insect control. Research in Population Ecology, 37: 239247.CrossRefGoogle Scholar
Bartell, R.J. 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiological Entomology, 7: 353364.Google Scholar
Bauce, E., Carisey, N., Dupont, A., van Frankenhuyzen, K. 2004. Bacillus thuringiensis subsp. kurstaki aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology, 97: 16241634.CrossRefGoogle ScholarPubMed
Bergh, J.C., Eveleigh, E.S., Seabrook, W.D. 1988. The mating status of field-collected male spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), in relation to trap location, sampling method, sampling date, and adult emergence. The Canadian Entomologist, 120: 821830.CrossRefGoogle Scholar
Beroza, M., Knipling, E.F. 1972. Gypsy moth control with the sex attractant pheromone. Science, 177: 1927.CrossRefGoogle ScholarPubMed
Birch, M.C. 1977. Response of both sexes of Trichoplusia ni (Lepidoptera: Noctuidae) to virgin females and to synthetic pheromone. Ecological Entomology, 2: 99104.CrossRefGoogle Scholar
Blais, J.R. 1953. Effects of the destruction of the current year's foliage of balsam fir on the fecundity and habits of flight of the spruce budworm. The Canadian Entomologist, 85: 446448.Google Scholar
Boulanger, Y., Arsenault, D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Canadian Journal of Forestry Research, 34: 10351043.CrossRefGoogle Scholar
Byers, J.A. 2007. Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environmental Entomology, 36: 13281338.CrossRefGoogle ScholarPubMed
Cadogan, B.L., Thompson, D., Retnakaran, A., Scharbach, R.D., Robinson, A., Staznik, B. 1998. Deposition of aerially applied tebufenozide (RH5992) on balsam fir (Abies balsamea) and its control of spruce budworm (Choristoneura fumiferana [Clem.]). Pesticide Science, 53: 8090.3.0.CO;2-B>CrossRefGoogle Scholar
Cai, H.J., You, M.S., Fu, J.W., Li, S.Y. 2010. Lethal effects of pyrethrins on spruce budworm (Choristoneura fumiferana). Journal of Forestry Research, 21: 350354.CrossRefGoogle Scholar
Cardé, R.T., Hagaman, T.E. 1984. Mate location strategies of gypsy moths in dense populations. Journal of Chemical Ecology, 10: 2531.CrossRefGoogle ScholarPubMed
Cardé, R.T., Minks, A.K. 1995. Control of moth pests by mating disruption: successes and constraints. Annual Review of Entomology, 40: 559585.CrossRefGoogle Scholar
Delisle, J., Simard, J. 2002. Factors involved in the post-copulatory neural inhibition of pheromone production in Choristoneura fumiferana and C. rosaceana females. Journal of Insect Physiology, 48: 181188.CrossRefGoogle ScholarPubMed
DeLury, N.C., Judd, G.J.R., Gardiner, M.G.T. 2005. Antennal detection of sex pheromone by female Pandemis limitata (Robinson) (Lepidoptera: Tortricidae) and its impact on their calling behaviour. Journal of the Entomological Society of British Columbia, 102: 311.Google Scholar
den Otter, C.J., de Cristofaro, A., Voskamp, K.E., aned Rotundo, G. 1996. Electrophysiological and behavioural responses of chestnut moths, Cydia fagiglandana and C. splendana (Lep., Tortricidae), to sex attractants and odours of host plants. Journal of Applied Entomology, 120: 413421.CrossRefGoogle Scholar
Dimond, J.B., Mott, D.G., Kemp, W.P., Krall, J.H. 1984. A field test of mating-suppression using the spruce budworm pheromone. Maine Agricultural Experiment Station, University of Maine at Orono, Technical Bulletin 113. 21 pp.Google Scholar
Elkinton, J.S., Cardé, R.T. 1983. Appetitive flight behaviour of male gypsy moths (Lepidoptera: Lymantriidae). Environmental Entomology, 12: 17021707.CrossRefGoogle Scholar
El-Sayed, A.M., Suckling, D.M., Byers, J.A., Jang, E.B., Wearing, C.H. 2009. Potential of “lure and kill” in long-term pest management and eradication of invasive species. Journal of Economic Entomology, 102: 815835.CrossRefGoogle ScholarPubMed
El-Sayed, A.M., Suckling, D.M., Wearing, C.H., Byers, J.A. 2006. Potential of mass trapping for long-term pest management and eradication of invasive species. Journal of Economic Entomology, 99: 15501564.CrossRefGoogle ScholarPubMed
Eveleigh, E.S., Lucarotti, C.J., McCarthy, P.C., Morin, B., Royama, T., Thomas, A.W. 2007. Occurrence and effects of Nosema fumiferanae infections on adult spruce budworm caught above and within the forest canopy. Agricultural and Forest Entomology, 9: 247258.CrossRefGoogle Scholar
Evenden, M.L., Judd, G.J.R., Borden, J.H. 1999a. Pheromone-mediated mating disruption of Choristoneura rosaceana: is the most attractive blend really the most effective? Entomologia Experimentalis et Applicata, 90: 3747.CrossRefGoogle Scholar
Evenden, M.L., Judd, G.J.R., Borden, J.H. 1999b. Simultaneous disruption of pheromone communication in Choristoneura rosaceana and Pandemis limitaa with pheromone and antagonist blends. Journal of Chemical Ecology, 25: 501517.CrossRefGoogle Scholar
Fournier, C., Bauce, E., Dupont, A., Berthiaume, R. 2009. Wood losses and economical threshold of Btk aerial spray operation against spruce budworm. Pest Management Science, 66: 319324.CrossRefGoogle Scholar
Gaston, L.K., Shorey, H.H., Saario, C.A. 1967. Insect population control by use of sex pheromone to inhibit orientation between the sexes. Nature, 213: 1155.CrossRefGoogle Scholar
Gray, D.R. 2008. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Climatic Change, 87: 361383.CrossRefGoogle Scholar
Greenbank, D.O., Schaefer, G.W., Rainey, R.C. 1980. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Memoirs of the Entomological Society of Canada, 110: 149.CrossRefGoogle Scholar
Greenfield, M.D. 1981. Moth sex pheromones: an evolutionary perspective. Florida Entomologist, 64: 417.CrossRefGoogle Scholar
Groot, A.T., Inglis, O., Bowbridge, S., Santangelo, R.G., Blanco, C., López, J.D., et al. 2009. Geographic and temporal variation in moth chemical communication. Evolution, 63: 19872003.CrossRefGoogle ScholarPubMed
Harari, A.R., Zahavi, T., Thiéry, D. 2011. Fitness cost of pheromone production in signalling female moths. Evolution, 65: 15751582.CrossRefGoogle ScholarPubMed
Harvey, G.T. 1996. Population genetics of the spruce budworm, Choristoneura fumiferana (Clem.) Freeman (Lepidoptera: Tortricidae), in relation to geographical and population density references. The Canadian Entomologist, 128: 219243.CrossRefGoogle Scholar
Hulme, M., Gray, T. 1994. Mating disruption of Douglas-fir tussock moth (Lepidoptera: Lymantriidae) using a sprayable bead formulation of Z-6-heneicosen-11-one. Environmental Entomology, 23: 10971100.Google Scholar
Johannson, B.G., Jones, T.M. 2007. The role of chemical communication in mate choice. Biological Review, 82: 265289.CrossRefGoogle Scholar
Kettela, E., Holmes, S.E., Silk, P.J. 2006. Results of aerially applied Disrupt® microflakes on spruce budworm mating success, Ontario, 2005 [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Kettela, E., Silk, P. 2005. Development of a pheromone formulation for use in early intervention pest management strategies of the spruce budworm Choristoneura fumiferana (Clem.) [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Kipp, L., Bergh, J.C., Seabrook, W.D. 1987. A spruce budworm mating bias in two-component pheromone environments. Entomologia Experimentalis et Applicata, 45: 139144.CrossRefGoogle Scholar
Kipp, L., Lonergan, G.C., Bell, W.J. 1995. Male periodicity and the timing of mating in the spruce budworm (Lepidoptera: Tortricidae): influences of population density and temperature. Environmental Entomology, 24: 11501159.CrossRefGoogle Scholar
Kipp, L.R., Lonergan, G.C., Seabrook, W.D. 1990. Spruce budworm-related research, final report, 1989 [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Leonhardt, B.A., Mastro, V.C., Leonard, D.S., McLane, W., Reardon, R.C., Thorpe, K.W. 1996. Control of low-density gypsy moth (Lepidoptera: Lymantriidae) populations by mating disruption with pheromone. Journal of Chemical Ecology, 22: 12551272.CrossRefGoogle ScholarPubMed
Lim, H., Greenfield, M.D. 2006. Female pheromonal chorusing in an arctiid moth, Utetheisa ornatrix. Behavioral Ecology, 18: 165173.CrossRefGoogle Scholar
Lonergan, G., Silk, P., Kettela, E. 1997. Development of a 3M microencapsulated sex pheromone formulation for use in spruce budworm IPM programs [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Marsh, D., Kennedy, J.S., Ludlow, A.R. 1978. An analysis of anemotactic flight in male moths stimulated by pheromone. Physiological Entomology, 3: 221240.CrossRefGoogle Scholar
Martini, A., Baldassari, N., Baronio, P., Anderbrandt, O., Hedenström, E., Högberg, H.E., et al. 2002. Mating disruption of the pine sawfly Neodiprion sertifer (Hymenoptera: Diprionidae) in isolated pine stands. Agricultural and Forest Entomology, 4: 195201.CrossRefGoogle Scholar
McNeil, J.N. 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annual Review of Entomology, 36: 403430.CrossRefGoogle Scholar
McNeil, J.N. 1992. Evolutionary perspectives and insect pest control: an attractive blend for the deployment of semiochemicals in management programs. In Insect chemical ecology: an evolutionary approach. Edited by B.D. Roitberg and M.B. Isman. Chapman and Hall, New York. pp. 334351.Google Scholar
Miller, C.A. 1979. Report of spruce budworm pheromone trials, Maritimes [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Miller, C.A., McDougall, G.A. 1973. Spruce budworm moth trapping data using virgin females. Canadian Journal of Zoology, 51: 853858.CrossRefGoogle Scholar
Miller, J.R., Gut, L.J., de Lame, F.M., Stelinski, L.L. 2006a. Differentiation of competitive vs non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part 1): theory. Journal of Chemical Ecology, 32: 20892114.CrossRefGoogle Scholar
Miller, J.R., Gut, L.J., de Lame, G.F., Stelinski, L.L. 2006b. Differentiation of competitive vs non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (part 2): case studies. Journal of Chemical Ecology, 32: 21152143.CrossRefGoogle ScholarPubMed
Miller, J.R., McGhee, P.S., Siegert, P.Y., Adams, C.G., Huang, J., Grieshop, M.J., et al. 2010. General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromones. Proceedings of the National Academy of Science, 107: 2227.CrossRefGoogle Scholar
Milli, R., Koch, U.T., de Kramer, J. 1997. EAG measurement of pheromone distribution in apple orchards treated for mating disruption of Cydia pomonella. Entomologia Experimentalis et Applicata, 82: 289297.CrossRefGoogle Scholar
Morris, R.F. 1963. The dynamics of epidemic spruce budworm populations. Memoirs of the Entomological Society of Canada, 31: 332 pp.CrossRefGoogle Scholar
Mosimann, J.E. 1957. The evolutionary significance of rare matings in animal populations. Evolution, 12: 246261.CrossRefGoogle Scholar
Outram, I. 1971. Aspects of mating in the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 103: 11211128.CrossRefGoogle Scholar
Outram, I. 1973. Spruce budworm moth dispersal project, Chipman, N.B. 1973: morphometrics and reproductive status of the spruce budworm moths [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Overhulser, D.L., Daterman, G.E., Sower, L.L., Sartwell, C., Koerber, T.W. 1980. Mating disruption with synthetic sex attractants controls damage by Eucosma sonomana (Lepidoptera: Tortricidae, Olethreutinae) in Pinus ponderosa plantations. II. Aerially applied hollow fibre formulation. The Canadian Entomologist, 112: 163165.CrossRefGoogle Scholar
Palaniswamy, P., Ross, R.J., Seabrook, W.D., Lonergan, G.C., Wiesner, C.J., Tan, S.H., et al. 1982. Mating suppression of caged spruce budworm (Lepidoptera: Tortricidae) moths in different pheromone atmospheres and high population densities. Journal of Economic Entomology, 75: 989993.CrossRefGoogle Scholar
Palaniswamy, P., Seabrook, W.D. 1978. Behavioral responses of the female eastern spruce budworm Choristoneura fumiferana (Lepidoptera, Tortricidae) to the sex pheromone of her own species. Journal of Chemical Ecology, 4: 649655.CrossRefGoogle Scholar
Palaniswamy, P., Seabrook, W.D. 1985. The alteration of calling behaviour by female Choristoneura fumiferana when exposed to synthetic sex pheromone. Entomologia Experimentalis et Applicata, 37: 1316.CrossRefGoogle Scholar
Palaniswamy, P., Sivasubramanian, P., Seabrook, W.D. 1979. Modulation of sex pheromone perception in female moths of the eastern spruce budworm, Choristoneura fumiferana by Altosid. Journal of Insect Physiology, 25: 571574.CrossRefGoogle Scholar
Pearson, G.A., Dillery, S., Meyer, J.R. 2004. Modeling intra-sexual competition in a sex pheromone system: how much can female movement affect female mating success? Journal of Theoretical Biology, 21: 549555.CrossRefGoogle Scholar
Phelan, L.P. 1997. Evolution of mate-signalling in moths: phylogenetic considerations and predictions from the asymmetric tracking hypothesis. In Mating systems in insects and arachnids. Edited by J.C. Choe and B.J. Crespi. Cambridge University Press, Cambridge. pp. 240256.CrossRefGoogle Scholar
Ponder, B.M., Kipp, L.R., Bergh, C., Lonergan, G.C., Seabrook, W.D. 1986. Factors affecting spruce budworm (Choristoneura fumiferana) (Clem.) mating and mating disruption with pheromone in the laboratory. The Canadian Entomologist, 118: 797805.CrossRefGoogle Scholar
Régnière, J. 1996. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology, 25: 869881.CrossRefGoogle Scholar
Régnière, J., Delisle, J., Bauce, E., Dupont, A., Therrien, P., Kettela, E., et al. 2001. Understanding of spruce budworm population dynamics: development of early intervention strategies. Proceedings of the North American Forest Insect Work Conference, Information Report NOR-X-381, Edmonton, Alberta. pp. 57–68.Google Scholar
Régnière, J., Sanders, C.J. 1983. Optimal sample size for the estimation of spruce budworm (Lepidoptera: Tortricidae) populations on balsam fir and white spruce. The Canadian Entomologist, 115: 16211626.CrossRefGoogle Scholar
Régnière, J., St-Amant, R., Duval, P. 2012. Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biological Invasions. In press.CrossRefGoogle Scholar
Rhainds, M. 2010. Female mating failures in insects. Entomologia Experimentalis et Applicata, 136: 211226.CrossRefGoogle Scholar
Rhainds, M., Gries, G., Min, M.M. 1999. Size- and density-dependent reproductive success of bagworms, Metisa plana. Entomologia Experimentalis et Applicata, 91: 375383.Google Scholar
Richerson, J.V., Brown, E.A., Cameron, E.A. 1976. Pre-mating sexual activity of gypsy moth males in small plot field tests (Lymantria (= Portheria) dispar (L.): Lymantriidae). The Canadian Entomologist, 108: 439448.CrossRefGoogle Scholar
Royama, T. 1977. The effect of moth dispersal on the dynamics of a local spruce budworm population. Natural Resources Canada, Canadian Forest Service Bi-Monthly Research Notes, 33: 4344.Google Scholar
Royama, T. 1984. Population dynamics of the spruce budworm, Choristoneura fumiferana. Ecological Monographs, 54: 429462.CrossRefGoogle Scholar
Royama, T., MacKinnon, W.E., Kettela, E.G., Carter, N.E., Hartling, L.K. 2005. Analysis of spruce budworm outbreak cycles in New Brunswick, Canada, since 1952. Ecology, 86: 12121224.CrossRefGoogle Scholar
Sanders, C.J. 1976. Disruption of sex attraction in the eastern spruce budworm. Environmental Entomology, 5: 868872.CrossRefGoogle Scholar
Sanders, C.J. 1979. Spruce budworm mating disruption trials using synthetic attractant in Conrel fibres (Ontario, 1977) [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Sanders, C.J. 1982. Disruption of male spruce budworm orientation to calling females in a wind tunnel by synthetic pheromone. Journal of Chemical Ecology, 8: 493506.CrossRefGoogle Scholar
Sanders, C.J. 1983. Local dispersal of male spruce budworm (Lepidoptera: Tortricidae) moths determined by mark, release, and recapture. The Canadian Entomologist, 115: 10651070.CrossRefGoogle Scholar
Sanders, C.J. 1985. Disruption of spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), mating in wind tunnel by synthetic pheromone: role of habituation. The Canadian Entomologist, 117: 391393.CrossRefGoogle Scholar
Sanders, C.J. 1987. Flight and copulation of female spruce budworm in pheromone-impregnated air. Journal of Chemical Ecology, 13: 17491758.CrossRefGoogle Scholar
Sanders, C.J. 1995. Disruption of male spruce budworm orientation to female moths by pheromone and pheromone analogues in a wind-tunnel. Physiological Entomology, 20: 7180.CrossRefGoogle Scholar
Sanders, C.J. 1996. Effects of prolonged exposure to different concentrations of synthetic pheromone on mating disruption of spruce budworm moths in a wind tunnel. The Canadian Entomologist, 128: 5766.CrossRefGoogle Scholar
Sanders, C.J. 1997. Mechanisms of mating disruption in moths. In Insect pheromone research: new directions. Edited by R.T. Cardé and A.K. Minks. Chapman and Hall, New York. pp. 333346.Google Scholar
Sanders, C.J. 1998. Effect of pheromone permeation on sustained flight of male spruce budworm. The Canadian Entomologist, 130: 539544.CrossRefGoogle Scholar
Sanders, C.J., Lucuik, G.S. 1972. Factors affecting calling by female eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 104: 17511762.CrossRefGoogle Scholar
Sanders, C.J., Silk, P.J. 1981. Disruption of spruce budworm by means of Hercon plastic laminated flakes, Ontario 1981 [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Schmidt, J.O., Seabrook, W.D. 1979. Mating of caged spruce budworm moths in pheromone environments. Journal of Economic Entomology, 72: 509511.Google Scholar
Schmidt, J.O., Seabrook, W.D., Lonergan, G., Oda, T., Darvesh, S., Valenta, Z. 1980a. Effects of pheromone, pheromone components, and pheromone analogues on mating of the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist, 112: 605608.CrossRefGoogle Scholar
Schmidt, J.O., Thomas, A.W., Seabrook, W.D. 1980b. Mating of caged spruce budworm moths in forests treated with a Conrel® hollow-fibre pheromone formulation. Natural Resources Canada, Canadian Forestry Service Bi-Monthly Research Notes, 36: 25.Google Scholar
Seabrook, W.D. 1989. Spruce budworm pheromone project: 1989 progress report [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Seabrook, W.D., Baskerville, G.L. 1988. The development of a larvicide and pheromone based integrated pest management strategy for the control of the spruce budworm [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Seabrook, W.D., Kipp, L.R. 1986. The use of a two component blend of the spruce budworm sex pheromone for mating suppression [online]. In Proceedings of the international symposium on controlled release of bioactive materials. Edited by Q.A. Chandry and C. Thjeophilus. Controlled Released Society, Norfolk, Virginia. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Silk, P.J., Kettela, E.G. 2001. To develop and test pheromone formulations for early intervention management strategies of the spruce budworm [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Silk, P.J., Kettela, E.G. 2002. To develop and test pheromone formulations for use in early intervention strategies of the spruce budworm – year 2 [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Silk, P.J., Kuenen, L.P.S. 1984. Sex pheromones and their potential for the control of forest insects in Canada. In Chemical and biological controls in forestry. Edited by W.A. Garner and J. Harvey. American Chemical Society Symposium Series, 238: 35–47.Google Scholar
Silk, P.J., Kuenen, L.P.S. 1988. Sex pheromones and behavioural biology of the coniferophagous Choristoneura. Annual Review of Entomology, 33: 83101.CrossRefGoogle Scholar
Silk, P.J., Tan, S.H., Wiesner, C.J., Ross, R.J., Lonergan, G.C. 1980. Sex pheromone chemistry of the eastern spruce budworm, Choristoneura fumiferana. Environmental Entomology, 9: 640644.CrossRefGoogle Scholar
Stelinski, L.L., Il'ichev, A.L., Gut, L.J. 2006. Antennal and behavioral responses of virgin and mated oriental fruit moth (Lepidoptera: Tortricidae) females to their sex pheromone. Annals of the Entomological Society of America, 99: 898904.CrossRefGoogle Scholar
Taschenberg, E.F., Cardé, R.T., Roelofs, W.L. 1974. Sex pheromone mass trapping and mating disruption for control of redbanded leafroller and grape berry moths in vineyards. Environmental Entomology, 3: 239242.CrossRefGoogle Scholar
Teixera, L.A.F., Miller, J.R., Epstein, D.L., Gut, L.J. 2010. Comparison of mating disruption and mass trapping with Pyralidae and Sesiidae moths. Entomologia Experimentalis et Applicata, 137: 176183.CrossRefGoogle Scholar
Thomas, A.W., Borland, S.A., Greenbank, D.O. 1980. Field fecundity of the spruce budworm (Lepidoptera: Tortricidae) as determined from regression relationships between egg complement, fore wing length, and body weight. Canadian Journal of Zoology, 58: 16081611.CrossRefGoogle Scholar
Thorpe, K.W., Tcheslavskaia, K.S., Tobin, P.C., Blackbum, L.M., Leonard, D.S., Roberts, E.A. 2007. Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success. Entomologia Experimentalis et Applicata, 125: 223229.CrossRefGoogle Scholar
Trudel, R., Dupont, A., Bélanger, A. 2009. Experimental pheromone applications using Disrupt Micro-flakes SBW® for the control of the spruce budworm populations: Québec mating disruption trials 2008 [online]. Available from http://atl.cfs.nrcan.gc.ca/sprucebudworm/ [accessed 4 January 2012].Google Scholar
Vacas, S., Alfaro, C., Zarzo, M., Navarro-Llopis, V., Primo, J. 2011. Effect of sex pheromone emission on the attraction of Lobesia botrana. Entomologia Experimentalis et Applicata, 139: 250257.CrossRefGoogle Scholar
Wallace, E.K., Albert, P.J., McNeil, J.N. 2004. Oviposition behaviour of the eastern spruce buworm Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). Journal of Insect Behavior, 17: 145154.CrossRefGoogle Scholar
Weatherston, J., Roelofs, W., Comeau, A., Sanders, C.J. 1971. Studies of physiologically active arthropod secretions. X. Sex pheromone of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 103: 17411747.CrossRefGoogle Scholar
Webb, R.E., Leonhardt, B.A., Plimmer, J.R., Tatman, K.M., Boyd, V.K., Cohen, D.L., et al. 1990. Effect of racemic disparlure released from grids of plastic ropes on mating success of gypsy moth (Lepidoptera: Lymantriidae) as influenced by dose and population density. Journal of Economic Entomology, 83: 910916.CrossRefGoogle Scholar
Weber, J.D., Volney, W.J.A., Spence, J.R. 1996. Intrinsic development rate of spruce budworm (Lepidoptera: Tortricidae) across a gradient of latitude. Environmental Entomology, 28: 224232.CrossRefGoogle Scholar
Weissling, T.J., Knight, A.L. 1995. Vertical distribution of codling moth adults in pheromone-treated and untreated plots. Entomologia Experimentalis et Applicata, 77: 271275.CrossRefGoogle Scholar
Weissling, T.J., Knight, A.L. 1996. Oviposition and calling behaviour of codling moth (Lepidoptera: Tortricidae) in the presence of codlemone. Annals of the Entomological Society of America, 89: 142147.CrossRefGoogle Scholar
Wellington, W.G., Henson, W.R. 1947. Notes on the effects of physical factors on the spruce budworm, Choristoneura fumiferana (Clem.). The Canadian Entomologist, 86: 168170.CrossRefGoogle Scholar
Welter, S.C., Pickel, C., Millar, J., Cave, F., van Steenwyk, R.A., Dunley, J. 2005. Pheromone mating disruption offers selective management options for key pests. California Agriculture, 59: 1622.CrossRefGoogle Scholar
Witzgall, P., Kirsch, P., Cork, A. 2010. Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36: 80100.CrossRefGoogle ScholarPubMed
Witzgall, P., Stelinski, L., Gut, L., Thomson, D. 2008. Codling moth management and chemical ecology. Annual Review of Entomology, 53: 503522.CrossRefGoogle ScholarPubMed
Yamanaka, T. 2007. Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests. Population Ecology, 49: 7586.Google Scholar
Yang, M.W., Dong, S.L., Chen, L. 2009. Electrophysiological and behavioral responses of female beet armyworm Spodoptera exigua (Hübner) to the conspecific female sex pheromone. Journal of Insect Behavior, 22: 153164.Google Scholar