Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T01:44:58.128Z Has data issue: false hasContentIssue false

Combination of protein-rich pea flour and pea extract with insecticides and enzyme inhibitors for control of stored-product beetles

Published online by Cambridge University Press:  02 April 2012

Xingwei Hou
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Paul Fields*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada R3T 2M9
Wes Taylor
Affiliation:
Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada S7N 0X2
*
1Corresponding author (e-mail: pfields@agr.gc.ca).

Abstract

Protein-rich pea flour and its extract are toxic to stored-product beetles and, at a concentration of 0.1%, can control these insects in a granary. To reduce the concentration of protein-rich pea flour needed to control stored-product beetles, natural products or currently used grain protectants (diatomaceous earth, neem, Bacillus thuringiensis (Berliner), malathion, and pyrethrum) were mixed with protein-rich pea flour in wheat. Mixtures were tested against the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae). Neem and protein-rich pea flour acted synergistically against T. castaneum. Malathion and protein-rich pea flour acted synergistically against S. oryzae. Protein-rich pea flour combined with diatomaceous earth or pyrethrum acted additively against S. oryzae. All other combinations acted antagonistically. An extract from protein-rich pea flour reduced feeding of S. oryzae, and three enzyme inhibitors, piperonyl butoxide, profenofos, and diethyl maleate, were tested for their possible synergistic effects on feeding deterrence and mortality. Piperonyl butoxide and pea extract had additive effects, and diethyl maleate had no effect on the feeding and mortality of insects. Profenofos alone killed all insects in 3 days. The flour consumption of S. oryzae was positively correlated with LT50 (time to 50% mortality) in flour disks treated with pea extract.

Résumé

La farine de pois riche en protéines et l'extrait de pois sont toxiques pour les coléoptères ravageurs des produits entreposés et permettent, à une concentration de 0,1 %, de lutter efficacement contre ces insectes dans un grenier à céréales. Afin de réduire la concentration de farine de pois riche en protéines nécessaire pour réprimer les coléoptères ravageurs des produits entreposés, nous avons ajouté à de la farine de pois riche en protéines mêlée à du blé divers produits naturels ou d'autres substances servant couramment à protéger les céréales, soit de la terre de diatomées, du neem, des bactéries Bacillus thuringiensis (Berliner), du malathion et de la poudre de pyrèthre. Nous avons évalué ces mélanges pour la lutte contre le charançon du riz, Sitoplilus oryzae (L.) (Coleoptera: Curculionidae), le tribolium rouge de la farine, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) et le cucujide roux, Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae). Le neem et la farine de pois riche en protéines ont une action synergique contre T. castaneum. Le malathion et la farine de pois riche en protéines agissent en synergie contre S. oryzae. La farine de pois riche en protéines additionnée de terre de diatomées ou de poudre de pyrèthre a une action additive contre S. oryzae. Toutes les autres combinaisons ont une action antagoniste. Un extrait de farine de pois riche en protéines réduit l'alimentation de S. oryzae. Nous avons évalué les effets synergiques possibles de trois inhibiteurs d'enzymes, le butoxyde de pipéronyle, le profenofos et le maléate de dyéthyle, sur la réduction de l'alimentation et sur la mortalité. Le butoxyde de pipéronyle et l'extrait de pois ont des effets additifs, mais le maléate de diéthyle reste sans effet sur l'alimentation et la mortalité des insectes. Le profenofos seul cause la mort de tous les insectes en 3 jours. Il y a une corrélation positive entre la consommation de farine par S. oryzae et le LT50 (temps nécessaire pour que le taux de mortalité atteigne 50 %) sur des disques de farine traités à l'extrait de pois.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, S. 1982. Mixed-function oxidase activity in a generalist herbivore in relation to its biology, food plants, and feeding history. Ecology 64: 235–43CrossRefGoogle Scholar
Arlian, G.L. 1979. Significance of passive sorption of atmospheric water vapor and feeding in water balance of the rice weevil, Sitophilus oryzae. Comparative Biochemistry and Physiology A 62: 725–33CrossRefGoogle Scholar
Bell, E.A. 1977. Toxins in seeds. pp 143–61 in Harborne, J.B. (Ed), Biochemical aspects of plant and animal coevolution. New York: Academic Press, IncGoogle Scholar
Bernays, E.A., Simpson, S.J., 1982. Control of food intake. Advances in Insect Physiology 16: 59118CrossRefGoogle Scholar
Bodnaryk, R.P., Fields, P.G., Xie, Y.S., Fulcher, K.A. 1997. Insecticidal factor from peas. United States Patent 5,955,082Google Scholar
Carlson, S.D., Ball, H.J. 1962. Mode of action and insecticidal value of a diatomaceous earth as a grain protectant. Journal of Economic Entomology 55: 964–70CrossRefGoogle Scholar
Coombs, C.W., Billings, C.J., Porter, J.E. 1977. The effect of yellow split-peas (Pisum sativum L.) and other pulses on the productivity of certain strains of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and the ability of other strains to breed thereon. Journal of Stored Products Research 13: 53–8CrossRefGoogle Scholar
Delobel, B., Grenier, A., Gueguen, J., Ferrasson, E., Mbailao, M. 1998. Use of a polypeptide derived from a PA1b legume albumen as insecticide. Patent WO 99/58695Google Scholar
Dowd, P.F., Smith, C.M., Sparks, T.C. 1983. Detoxification of plant toxins by insects. Insect Biochemistry 13: 453–68CrossRefGoogle Scholar
Fields, P.G., Xie, Y.S., Hou, X. 2001. Repellent effect of pea (Pisum sativum) fractions against stored-product insects. Journal of Stored Products Research 37: 359–70CrossRefGoogle ScholarPubMed
Finney, D.J. 1971. Probit analysis. 3rd edition. Cambridge, United Kingdom: Cambridge University PressGoogle Scholar
Glantz, S.A. 2001. Primer of biostatistics. 5th edition. Boston, Massachusetts: McGraw-HillGoogle Scholar
Golob, P., Moss, C., Dales, M., Fidgen, A., Evans, J. 1999. The use of spices and medicinals as bioactive protectants for grains. FAO Agricultural Services Bulletin 137Google Scholar
Grenier, A.M., Mbaiguinam, M., Delobel, B. 1997. Genetical analysis of the ability of the rice weevil Sitophilus oryzae (Coleoptera: Curculionidae) to breed on split peas. Heredity 79: 1523CrossRefGoogle Scholar
Harborne, J.B., Boulter, D., Turner, B.I. 1971. Chemotaxonomy of the Leguminosae. London: Academic Press, IncGoogle Scholar
Holloway, G.J. 1986. The potency and effect of phytotoxins within yellow split-pea (Pisum sativum) and adzuki bean (Vigna angularis) on survival and reproductive potential of Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Bulletin of Entomological Research 76: 287–95CrossRefGoogle Scholar
Holloway, G.J., Mackness, M.I. 1988. The evolutionary adaptation of enzyme systems in Sitophilus oryzae fed on toxic legumes. Entomologia Experimentalis et Applicata 48: 165–72CrossRefGoogle Scholar
Holloway, G.J., Smith, R.H. 1985. Inheritance of the ability of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) to feed and breed on yellow split-pea (Pisum sativum). Bulletin of Entomological Research 75: 367–75CrossRefGoogle Scholar
Hou, X., Fields, P.G. 2003 a. Granary trial of protein-enriched pea flour for the control of three stored-product insects in barley. Journal of Economic Entomology 96: 1005–15CrossRefGoogle ScholarPubMed
Hou, X., Fields, P.G. 2003 b. Effectiveness of protein-enriched pea flour for the control of stored-product beetles. Entomologia Experimentalis et Applicata 108: 125–31CrossRefGoogle Scholar
Ishaaya, I. 1993. Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Archives of Insect Biochemistry and Physiology 22: 263–76CrossRefGoogle ScholarPubMed
Jacobson, M. 1989. Botanical pesticides: past, present, future. pp 110in Arnason, J.T., Philogene, B.J.R., Morand, P. (Eds), Insecticides of plant origin. Washington, District of Columbia: American Chemical SocietyGoogle Scholar
Jones, D.G. 1998. Piperonyl butoxide: the insecticide synergist. San Diego, California: Academic PressGoogle Scholar
Korunic, Z., Cenkowski, S., Fields, P.G. 1998. Grain bulk density as affected by diatomaceous earth and application method. Postharvest Biology and Technology 13: 81–9CrossRefGoogle Scholar
Krieger, R.I., Feeny, P.P., Wilkinson, C.F. 1971. Detoxification enzymes in the guts of caterpillars: an evolutionary answer to plant defences? Science (Wash., D.C.) 172: 579–80CrossRefGoogle Scholar
Laecke, K.V., Degheele, D. 1991. Synergism of diflubenzuron and teflubenzuron in larvae of beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 84: 785–9CrossRefGoogle Scholar
LeOra Software Inc. 1994. POLO-PC probit and logit analysis user's guide. Berkeley, California: LeOra Software IncGoogle Scholar
Lindroth, R.L. 1991. Differential toxicity of plant allelochemicals to insects: roles of enzymatic detoxication systems. pp 233in Bernays, E. (Ed), Insect–plant interactions. Volume III. Boston, Massachusetts: CRC PressGoogle Scholar
SAS Institute Inc. 2000. SAS OnlineDoc®. Version 8. Cary, North Carolina: SAS Institute Inc. Available from http://v8doc.sas.com/sod_register.htmlGoogle Scholar
SPPS Inc. 2003. SigmaPlot 8 programming guide. Chicago: SPSS Inc.Google Scholar
Steel, R.G.D., Torrie, J.H., Dickey, D.A. 1997. Principles and procedures of statistics: a biometrical approach. 3rd edition. Boston, Massachusetts: McGraw-HillGoogle Scholar
Sun, Y.P., Johnson, E.R. 1960. Analysis of joint action of insecticides against house flies. Journal of Economic Entomology 53: 887–92CrossRefGoogle Scholar
Terriere, L.C. 1984. Induction of detoxication enzymes in insects. Annual Review of Entomology 29: 7188CrossRefGoogle ScholarPubMed
Weaver, D., Subramanyam, B.h. 2000. Botanicals. pp 303–20 in Subramanyam, B.h., Hagstrum, D. (Eds), Alternatives to pesticides in stored-product IPM. Dordrecht, Netherlands: Kluwer Academic PublishersCrossRefGoogle Scholar
Welling, W., De Vries, J.W. 1985. Synergism of organophosphorus insecticides by diethylmaleate and related compounds in house flies. Pesticide Biochemistry and Physiology 23: 358–69CrossRefGoogle Scholar
Xie, Y., Bodnaryk, R.P., Fields, P.G. 1996. A rapid and simple flour-disk bioassay for testing substances active against stored-product insects. The Canadian Entomologist 128: 865–75CrossRefGoogle Scholar