Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T12:53:49.636Z Has data issue: false hasContentIssue false

Diversity of cavity-nesting bees (Hymenoptera: Apoidea) within apple orchards and wild habitats in the Annapolis Valley, Nova Scotia, Canada

Published online by Cambridge University Press:  02 April 2012

Cory S. Sheffield*
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5
Peter G. Kevan
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Sue M. Westby
Affiliation:
Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5
Robert F. Smith
Affiliation:
Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5
*
2Corresponding author (e-mail: corys@yorku.ca).

Abstract

Solitary cavity-nesting bees, especially trap-nesting Megachilidae, have great potential as commercial pollinators. A few species have been developed for crop pollination, but the diversity, abundance, and potential pollination contributions of native cavity-nesting bees within agricultural systems have seldom been assessed. Our objectives were to compare the diversity and fecundity of cavity-nesting bees in Nova Scotia in natural ecosystems with those in apple orchards under three levels of management, using trap nests, and to determine whether any native bees show promise for development as pollinators. Our results show that species richness and numbers of bees reared from trap nests in commercially managed orchards, abandoned orchards, and natural habitats were similar, and species’ compositional patterns were not unique to specific habitats. Trap nests can be used to increase and maintain cavity-nesting bee populations within Nova Scotia apple orchards. Osmia tersula Cockerell (Megachilidae), which accounted for almost 45% of all bees captured and was the most abundant species nesting in all habitats evaluated, should be assessed for potential as a commercial pollinator of spring-flowering crops. The influence of natural cavities on bee species richness in trap-nesting surveys is also discussed.

Résumé

Les abeilles solitaires qui nichent dans les cavités, particulièrement les Megachilidae qui logent dans les nids-pièges, représentent un important potentiel de pollinisateurs commerciaux. Quelques espèces ont été utilisées pour la pollinisation des cultures, mais on a rarement évalué la diversité, l’abondance et la contribution potentielle à la pollinisation des abeilles qui nichent dans les cavités dans les systèmes agricoles. Notre objectif est de comparer à l’aide de nids-pièges la diversité et la fécondité des abeilles qui nichent dans les cavités dans les écosystèmes naturels et dans des pommeraies gérées sous trois régimes différents en Nouvelle-Écosse, ainsi que de déterminer s’il y a des abeilles indigènes qui offrent un potentiel pour servir à la pollinisation. Nos résultats montrent que la richesse spécifique et le nombre d’abeilles obtenues dans les nids-pièges sont semblables dans les pommeraies sous gestion commerciale, dans les pommeraies abandonnées et les habitats naturels; de plus, les patrons de composition spécifique ne sont pas propres aux différents habitats. Dans les pommeraies de Nouvelle-Écosse, les nids-pièges peuvent servir à augmenter et à maintenir les populations d’abeilles qui nichent dans les cavités. Osmia tersula Cockerell (Megachilidae), qui représente presque 45 % de toutes les abeilles capturées et qui est l’espèce la plus abondante à nicher dans tous les habitats étudiés, devrait être évalué en vue d’une utilisation éventuelle comme pollinisateur des cultures qui fleurissent au printemps. Nous discutons aussi de l’influence des cavités naturelles sur la richesse spécifique des abeilles dans les inventaires faits à l’aide de nids-pièges.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banaszak, J. 2000. Effect of habitat heterogeneity on the diversity and density of pollinating insects. In Interchanges of insects between agricultural and surrounding landscapes. Edited by Ekbom, B., Irwin, M.E., and Robert, Y.. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 123140.CrossRefGoogle Scholar
Bosch, J., and Kemp, W.P. 2001. How to manage the blue orchard bee as an orchard pollinator. Sustainable Agriculture Network Handbook Series No. 5.Google Scholar
Bosch, J., Maeta, Y., and Rust, R. 2001. A phylogenetic analysis of nesting behavior in the genus Osmia (Hymenoptera: Megachilidae). Annals of the Entomological Society of America, 94: 617627.CrossRefGoogle Scholar
Buschini, M.L.T. 2006. Species diversity and community structure in trap-nesting bees in southern Brazil. Apidologie, 37: 5866.CrossRefGoogle Scholar
Cane, J.H., Griwold, T., and Parker, F.D. 2007. Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae). Annals of the Entomological Society of America, 100: 350358.CrossRefGoogle Scholar
Corbet, S.A. 1995. Insects, plants and succession: advantages of long-term set aside. Agriculture, Ecosystems and Environment, 53: 201217.CrossRefGoogle Scholar
Craig, W. 1998. Tree fruit census of the Annapolis Valley. Production Technology Branch, Nova Scotia Department of Agriculture and Marketing, Kentville, Nova Scotia.Google Scholar
Forup, M.L., and Memmott, J. 2005. The relationship between the abundances of bumblebees and honeybees in a native habitat. Ecological Entomology, 30: 4757.CrossRefGoogle Scholar
Free, J.B. 1993. Insect pollination of crops. 2nd ed. Academic Press, San Diego, California.Google Scholar
Fye, R.E. 1965. Biology of Apoidea taken in trap nests in northwestern Ontario (Hymenoptera). The Canadian Entomologist, 97: 863877.CrossRefGoogle Scholar
Gathmann, A., and Tscharntke, T. 2002. Foraging ranges of solitary bees. Journal of Animal Ecology, 71: 757764.CrossRefGoogle Scholar
Heard, T.A. 1999. The role of stingless bees in crop pollination. Annual Review of Entomology, 44: 183206.CrossRefGoogle ScholarPubMed
Ivanochko, M. 1979. Taxonomy, biology and alfalfa pollinating potential of Canadian leaf-cutting bees: genus Megachile Latreille (Hymenoptera: Megachilidae). M.Sc. thesis, McGill University, Montréal, Quebec.Google Scholar
Kevan, P.G. 2001. Pollination: a plinth, pedestal, and pillar for terrestrial productivity: the why, how, and where of pollination protection, conservation, and promotion. In Bees and crop pollination — crisis, crossroads, conservation. Edited by Stubbs, C.S. and Drummond, F.A.. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America. Entomological Society of America, Lanham, Maryland. pp. 768.Google Scholar
Kevan, P.G., and Baker, H.G. 1983. Insects as flower visitors and pollinators. Annual Review of Entomology, 28: 407–53.CrossRefGoogle Scholar
Kevan, P.G., Straver, W.A., Offer, M., and Laverty, T.M. 1991. Pollination of greenhouse tomatoes by bumblebees in Ontario. Proceedings of the Entomological Society of Ontario, 122: 1519.Google Scholar
Klein, A.-M., Steffan-Dewenter, I., Buchori, D., and Tscharntke, T. 2002. Effects of land use intensity in tropical agroforestry systems on coffee flowervisiting and trap-nesting bees and wasps. Conservation Biology, 16: 10031014.CrossRefGoogle Scholar
Kremen, C., Williams, N.M., and Thorp, R.W. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences, 99: 1681216816.CrossRefGoogle ScholarPubMed
Krombein, K.V. 1967. Trap-nesting wasps and bees: life histories, nests, and associates. Smithsonian Institution Press, Washington, D.C.CrossRefGoogle Scholar
Levins, R. 1968. Evolution in changing environments. Princeton University Press, Princeton, New Jersey.CrossRefGoogle Scholar
Magurran, A.E. 2004. Measuring biological diversity. Blackwell Publishing, Malden, Massachusetts.Google Scholar
Marshall, E.J.P., and Moonen, A.C. 2002. Field margins in northern Europe: their function and interactions with agriculture. Agriculture, Ecosystems and Environment, 89: 521.CrossRefGoogle Scholar
Michener, C.D. 1947. A revision of the American species of Hoplitis (Hymenoptera, Megachilidae). Bulletin of the American Museum of Natural History, 89: 257317.Google Scholar
Minitab Inc. 2000. MINITAB® statistical software. Release 13 [computer program]. Minitab Inc., State College, Pennsylvania.Google Scholar
Morato, E.F., and Martins, R.P. 2006. An overview of proximate factors affecting the nesting behavior of solitary wasps and bees (Hymenoptera: Aculeata) in preexisting cavities in wood. Neotropical Entomology, 35: 285298.CrossRefGoogle ScholarPubMed
Müller, A., Diener, S., Schnyder, S., Stutz, K., Sedivy, C., and Dorn, S. 2006. Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee–flower relationships. Biological Conservation, 130: 604615.CrossRefGoogle Scholar
Paini, D.R., and Roberts, J.D. 2004. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biological Conservation, 123: 103112.CrossRefGoogle Scholar
Potts, S.G., Vulliamy, B., Dafni, A., Ne'eman, G., and Wilmer, P. 2003. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology, 84: 26282642.CrossRefGoogle Scholar
Potts, S.G., Vulliamy, B., Roberts, S., O'Toole, C., Dafni, A., Ne'eman, G., and Willmer, P. 2005. Role of nesting resources in organizing diverse bee communities in a Mediterranean landscape. Ecological Entomology, 30: 7885.CrossRefGoogle Scholar
Seaby, R.M.H., Henderson, P.A., and Prendergast, J.R. 2004. Community analysis package. Version 3.2 [computer program]. Pisces Conservations Ltd., Lymington, United Kingdom.Google Scholar
Sheffield, C.S. 2006. Diversity and management of bees for the pollination of apple in the Annapolis Valley of Nova Scotia. Ph.D. thesis, University of Guelph, Guelph, Ontario.Google Scholar
Sheffield, C.S., Kevan, P.G., Smith, R.F., Rigby, S.M., and Rogers, R.E.L. 2003. Bee species of Nova Scotia, Canada, with new records and notes on bionomics and floral relations (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society, 76: 357384.Google Scholar
Steffan-Dewenter, I. 2002. Landscape context affects trap-nesting bees, wasps, and their natural enemies. Ecological Entomology, 27: 631637.CrossRefGoogle Scholar
Steffan-Dewenter, I. 2003. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conservation Biology, 17: 10361044.CrossRefGoogle Scholar
Steffan-Dewenter, I., and Leschke, K. 2003. Effects of habitat management on vegetation and aboveground nesting bees and wasps of orchard meadows in Central Europe. Biodiversity and Conservation, 12: 19531968.CrossRefGoogle Scholar
Stephen, W.P. 2003. Solitary bees in North American Agriculture: a perspective. In For nonnative crops, whence pollinators of the future? Edited by Strickler, K. and Cane, J.H.. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America. Entomological Society of America, Lanham, Maryland. pp. 4166.Google Scholar
Stubbs, C.S., and Drummond, F.A. 2001. Strategies for conserving mason bees. In Bees and crop pollination — crisis, crossroads, conservation. Edited by Stubbs, C.S. and Drummond, F.A.. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America. Entomological Society of America, Lanham, Maryland. pp. 95112.CrossRefGoogle Scholar
Thorp, R.W. 2003. Bumble bees (Hymenoptera: Apidae): commercial use and environmental concerns. In For nonnative crops, whence pollinators of the future? Edited by Strickler, K. and Cane, J.H.. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America. Entomological Society of America, Lanham, Maryland. pp. 2140.Google Scholar
Torchio, P.F. 2003. Development of Osmia lignaria (Hymenoptera: Megachildae) as a managed pollinator of apple and almond crops: a case history. In For nonnative crops, whence pollinators of the future? Edited by Strickler, K., and Cane, J.H.. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America. Entomological Society of America, Lanham, Maryland. pp. 6784.Google Scholar
Tylianakis, J.M., Klein, A.-M., Lozada, T., and Tscharntke, T. 2006. Spatial scale of observation affects α, β and γ diversity of cavity-nesting bees and wasps across a tropical land-use gradient. Journal of Biogeography, 33: 12951304.CrossRefGoogle Scholar
Westrich, P. 1996. Habitat requirements of central European bees and the problems of partial habitats. In The conservation of bees. Edited by Matheson, A., Buchmann, S.L, O'Toole, C., Westrich, P., and Williams, I.H.. Linnean Society and International Bee Research Association and Academic Press, London, United Kingdom. pp. 116.Google Scholar
Williams, N.M. and Kremen, C. 2007. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecological Applications, 17: 910921.CrossRefGoogle Scholar
Zar, J.H. 1999. Biostatistical analyis. 4th ed. Prentice Hall, Upper Saddle River, New Jersey.Google Scholar