Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T02:07:59.442Z Has data issue: false hasContentIssue false

Identification of chemosensory gene families in Rhyzopertha dominica (Coleoptera: Bostrichidae)

Published online by Cambridge University Press:  07 May 2015

Mory Mandiana Diakite
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
Juan Wang
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
Suliman Ali
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
Man-Qun Wang*
Affiliation:
Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
*
1Corresponding author (e-mail: mqwang@mail.hzau.edu.cn).

Abstract

Chemoreception is a key process for insects. Odorant messages diffuse through the air and are translated into physiological signals by chemosensory receptor neurons in sensilla that are mainly located on insect antennae. We sequenced the antenna transcriptome of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), which is a serious pest of stored grains throughout regions with warm climates, and performed transcriptome analysis on R. dominica antennae. We obtained 57 million 90-base pair-long reads that we assembled into 37 877 unigenes with a mean size of 1007 base pairs. Predicted protein sequences were matched with Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) (79.1%), Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) (1.7%), Megachile rotundata (Fabricius) (Hymenoptera: Megachilidae) (1.3%), Acyrthosiphon pisum Harris (Hemiptera: Aphididae) (1.2%), and other (16.7%) homologues. In chemosensory gene families, we identified transcripts that encoded the following putative genes: 12 odorant-binding proteins (OBPs), four pheromone-binding proteins (PBPs), eight chemosensory proteins (CSPs), five sensory neuron membrane proteins (SNMPs), six odorant receptors, and eight ionotropic receptors. The diversity of the predicted OBPs, PBPs, and CSPs are also discussed. These findings will advance our understanding of olfaction process by this pest.

Type
Physiology, Biochemistry, Development and Genetics
Copyright
© Entomological Society of Canada 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contribute equally to this work.

Subject Editor: Jianghua Sun

References

Allen, J.E. and Wanner, K.W. 2011. Asian corn borer pheromone binding protein 3, a candidate for evolving specificity to the 12-tetradecenyl acetate sex pheromone. Insect Biochemistry and Molecular Biology, 41: 141149.CrossRefGoogle Scholar
Andersson, M.N., Grosse-Wilde, E., Keeling, C.I., Bengtsson, J.M., Yuen, M.M., Li, M., et al. 2013. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics, 14: 198.CrossRefGoogle ScholarPubMed
Bairoch, A. and Boeckmann, B. 1991. The SWISS-PROT protein sequence data bank. Nucleic Acids Research, 19: 2247.CrossRefGoogle ScholarPubMed
Benton, R., Vannice, K.S., Gomez-Diaz, C., and Vosshall, L.B. 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila . Cell, 136: 149162.CrossRefGoogle ScholarPubMed
Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21: 36743676.CrossRefGoogle ScholarPubMed
Croset, V., Rytz, R., Cummins, S.F., Budd, A., Brawand, D., Kaessmann, H., et al. 2010. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. Public Library of Science Genetics, 6: e1001064.Google ScholarPubMed
Edde, P.A. 2012. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. Journal of Stored Products Research, 48: 118.CrossRefGoogle Scholar
Edde, P.A. and Phillips, T.W. 2006. Potential host affinities for the lesser grain borer, Rhyzopertha dominica: behavioral responses to host odors and pheromones and reproductive ability on non‐grain hosts. Entomologia Experimentalis et Applicata, 119: 255263.CrossRefGoogle Scholar
Engsontia, P., Sanderson, A.P., Cobb, M., Walden, K.K., Robertson, H.M., and Brown, S. 2008. The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum . Insect Biochemistry and Molecular Biology, 38: 387397.CrossRefGoogle ScholarPubMed
Galindo, K. and Smith, D.P. 2001. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics, 159: 10591072.CrossRefGoogle ScholarPubMed
Gong, D.P., Zhang, H.J., Zhao, P., Xia, Q.Y., and Xiang, Z.H. 2009. The odorant binding protein gene family from the genome of silkworm, Bombyx mori . BMC Genomics, 10: 332.CrossRefGoogle ScholarPubMed
Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29: 644652.CrossRefGoogle ScholarPubMed
Grosse-Wilde, E., Kuebler, L.S., Bucks, S., Vogel, H., Wicher, D., and Hansson, B.S. 2011. Antennal transcriptome of Manduca sexta . Proceedings of the National Academy of Sciences, 108: 74497454.CrossRefGoogle ScholarPubMed
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36: D480D484.CrossRefGoogle ScholarPubMed
Khorramshahi, A. and Burkholder, W. 1981. Behavior of the lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrichidae). Journal of Chemical Ecology, 7: 3338.CrossRefGoogle ScholarPubMed
Leal, W.S. 2013. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58: 373391.CrossRefGoogle ScholarPubMed
Li, H., Zhang, A.J., Chen, L.Z., Zhang, G.A., and Wang, M.Q. 2014. Construction and analysis of cDNA libraries from the antennae of Batocera horsfieldi and expression pattern of putative odorant binding proteins [online]. Journal of Insect Science, 14: 57.CrossRefGoogle ScholarPubMed
Mamidala, P., Wijeratne, A.J., Wijeratne, S., Poland, T., Qazi, S.S., Doucet, D., et al. 2013. Identification of odor-processing genes in the emerald ash borer, Agrilus planipennis . Public Library of Science One, 8: e56555.Google ScholarPubMed
Manoharan, M., Fuchs, P.F., Sowdhamini, R., and Offmann, B. 2013. Insights on pH-dependent conformational changes of mosquito odorant binding proteins by molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 32: 110.Google ScholarPubMed
Mitchell, R.F., Hughes, D.T., Luetje, C.W., Millar, J.G., Soriano-Agatón, F., Hanks, L.M., et al. 2012. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae . Insect Biochemistry and Molecular Biology, 42: 499505.CrossRefGoogle ScholarPubMed
Nichols, Z. and Vogt, R.G. 2008. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum . Insect Biochemistry and Molecular Biology, 38: 398415.CrossRefGoogle ScholarPubMed
Pelletier, J. and Leal, W.S. 2009. Genome analysis and expression patterns of odorant-binding proteins from the southern house mosquito Culex pipiens quinquefasciatus . Public Library of Science One, 4: e6237.Google ScholarPubMed
Pelosi, P., Zhou, J.J., Ban, L., and Calvello, M. 2006. Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences, 63: 16581676.CrossRefGoogle ScholarPubMed
Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., et al. 2003. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics, 19: 651652.CrossRefGoogle ScholarPubMed
Phillips, T.W. 1997. Semiochemicals of stored-product insects: research and applications. Journal of Stored Products Research, 33: 1730.CrossRefGoogle Scholar
Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., et al. 2008. The genome of the model beetle and pest Tribolium castaneum . Nature, 452: 949955.Google ScholarPubMed
Sotiriades, E. and Dollas, A. 2007. A general reconfigurable architecture for the BLAST algorithm. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 48: 189208.CrossRefGoogle Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 27312739.CrossRefGoogle ScholarPubMed
Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 28: 3336.CrossRefGoogle ScholarPubMed
Vieira, F.G. and Rozas, J. 2011. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biology and Evolution, 3: 476.CrossRefGoogle ScholarPubMed
Vogt, R.G. 2002. Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; possible orthologues of the OS-E and OS-F OBPs of Drosophila melanogaster . Journal of Chemical Ecology, 28: 23712376.CrossRefGoogle Scholar
Vogt, R.G., Miller, N.E., Litvack, R., Fandino, R.A., Sparks, J., Staples, J., et al. 2009. The insect SNMP gene family. Insect Biochemistry and Molecular Biology, 39: 448456.CrossRefGoogle ScholarPubMed
Wanner, K., Isman, M., Feng, Q., Plettner, E., and Theilmann, D. 2005. Developmental expression patterns of four chemosensory protein genes from the eastern spruce budworm, Chroistoneura fumiferana . Insect Molecular Biology, 14: 289300.CrossRefGoogle ScholarPubMed
Xia, Y., Wang, G., Buscariollo, D., Pitts, R.J., Wenger, H., and Zwiebel, L.J. 2008. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proceedings of the National Academy of Sciences, 105: 64336438.CrossRefGoogle ScholarPubMed
Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 34: W293W297.CrossRefGoogle Scholar
Zhou, J.J., Huang, W., Zhang, G.A., Pickett, J.A., and Field, L.M. 2004. “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae . Gene, 327: 117129.CrossRefGoogle ScholarPubMed
Zhou, S.S., Sun, Z., Ma, W., Chen, W., and Wang, M.Q. 2014. De novo analysis of the Nilaparvata lugens (Stål) antenna transcriptome and expression patterns of olfactory genes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 9: 3139.Google ScholarPubMed
Supplementary material: File

Mandiana Diakite supplementary material

Table S1

Download Mandiana Diakite supplementary material(File)
File 15.3 KB
Supplementary material: File

Mandiana Diakite supplementary material

Table S2

Download Mandiana Diakite supplementary material(File)
File 40.8 KB
Supplementary material: File

Mandiana Diakite supplementary material

Table S3

Download Mandiana Diakite supplementary material(File)
File 17.1 KB
Supplementary material: File

Mandiana Diakite supplementary material

Table S4

Download Mandiana Diakite supplementary material(File)
File 130 KB