Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T22:55:03.667Z Has data issue: false hasContentIssue false

QUANTITATIVE ASSESSMENT OF APHIDIUS SMITHI (HYMENOPTERA: APHIDIIDAE): FECUNDITY, INTRINSIC RATE OF INCREASE, AND FUNCTIONAL RESPONSE

Published online by Cambridge University Press:  31 May 2012

Manfred Mackauer
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6

Abstract

The reproductive and demographic statistics of Aphidius smithi Sharma & Subba Rao parasitizing third-instar pea aphids, Acyrthosiphon pisum Harris, were determined under constant laboratory conditions. At host densities of 5, 10, 20, 40, 60 or 100 aphids/day, the parasite lived an average of 7 days at 20.5 °C. At host densities of ≤20 aphids/day, the total number of eggs laid and the total number of hosts attacked were limited by the numbers of hosts available. Fecundity was highest with an average of 870 eggs/female at density 100; the maximum number of eggs laid by any female was 1770. Superparasitism was common at all densities, resulting in up to 84% (at density 5) of all eggs being wasted. The relationship between host density and the number of aphids attacked per egg laid was linear for densities of ≥20 aphids/day. The intrinsic rate of natural increase (r) varied with the host density. It reached maximum value at density 100, calculated as 0.358 female/female/day and assuming an overall sex ratio of 1:1 males:females. Regression equations describing r as a function of host density and parasite sex ratio are provided. It is shown that the potential rate of increase of A. smithi exceeds that of the pea aphid over a broad range of average conditions. The parasite's functional response was convex (Holling type II) and decelerated with increasing density. The intrinsic attack rate (a′) and handling time (Th) were estimated from the functional response curve as a′ = 6.62 days−1 and Th = 0.0033 day (4.7 min). The ‘random parasite’ equation satisfactorily predicted the number of aphids attacked at each density.

Résumé

Les statistiques démographiques et reproductives d'Aphidius smithi Sharma & Subba Rao parasitant des stades trois de puceron du pois, Acyrthosiphon pisum Harris, ont été déterminées sous des conditions constantes au laboratoire. Aux densités d'hôtes de 5, 10, 20, 40, 60 et 100 hôtes/jour, le parasite a vécu en moyenne 7 jours à 20.5 °C. Aux densités ≤20 hôtes/jour, le nombre total d'oeufs déposés et le nombre total d'hôtes attaqués étaient limités par le nombre d'hôtes disponibles. La fécondité moyenne maximum de 870 oeufs par femelle a été atteinte à la densité de 100; le nombre maximum d'oeufs jamais pondus par une femelle fût de 1770. Le superparasitisme était fréquent à toutes les densités, causant jusqu'à 84% (à la densité de 5) de gaspillage des oeufs. La relation entre la densité d'hôtes et le nombre de pucerons attaqués par oeuf pondu était linéaire aux densités ≥20 pucerons par jour. Le taux intrinsèque d'accroissement naturel (r) a varié avec la densité d'hôtes. Le maximum fût atteint à la densité de 100, soit de 0.358 femelle/femelle/jour, en prenant pour acquis un rapport mâles : femelles global de 1 : 1. Des équations de régression décrivant r en fonction de la densité d'hôtes et du rapport des sexes sont présentées. Il est démontré que le potentiel d'accroissement d'A. smithi est supérieur à celui du puceron du pois pour un ensemble considérable de conditions moyennes. La réponse fonctionnelle du parasite s'est avérée convexe (type II de Holling), montrant une décélération avec l'augmentation de la densité. Le rythme instantané d'attaque (a′) et le temps de manipulation (Th) estimés à partir de la courbe de réponse fonctionnelle sont : a′ = 6.62 jour−1 et Th = 0.0033 jour (4.7 min). L'équation du parasite à comportement de recherche aléatoire ("random parasite") a permis de prédire le nombre d'hôtes attaqués à chaque densité de façon satisfaisante.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschlimann, J.-P. 1981. Occurrence and natural enemies of Therioaphis trifolii Monell and Acyrthosiphon pisum Harris (Homoptera, Aphididae) on lucerne in the Mediterranean region. Acta oecol. 2: 311.Google Scholar
Andrewartha, H. G. and Birch, L. C.. 1954. The Distribution and Abundance of Animals. Univ. of Chicago Press, Chicago and London. xv + 782 pp.Google Scholar
Angalet, G. W. and Coles, L. W.. 1966. The establishment of Aphidius smithi in the eastern United States. J. econ. Ent. 59: 769770.CrossRefGoogle Scholar
Bliss, C. I. 1970. Statistics in Biology. Vol. 2. McGraw-Hill, New York. xiii + 639 pp.Google Scholar
Caltagirone, L. E. 1981. Landmark examples in classical biological control. A. Rev. Ent. 26: 213232.CrossRefGoogle Scholar
Campbell, A. 1973. Seasonal changes in abundance of the pea aphid and its associated parasites in the southern interior of British Columbia. Ph.D. Thesis, Simon Fraser Univ. 282 pp.Google Scholar
Campbell, A. and Mackauer, M.. 1975 a. Thermal constants for development of the pea aphid (Homoptera: Aphididae) and some of its parasites. Can. Ent. 107: 419423.CrossRefGoogle Scholar
Campbell, A. and Mackauer, M.. 1975 b. The effect of parasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on reproduction and population growth of the pea aphid (Homoptera: Aphididae). Can. Ent. 107: 919926.CrossRefGoogle Scholar
Campbell, A. and Mackauer, M.. 1977. Reproduction and population growth of the pea aphid (Homoptera: Aphididae) under laboratory and field conditions. Can. Ent. 109: 277284.CrossRefGoogle Scholar
Clausen, C. P. 1978. Aphididae. pp. 35–46 in Clausen, C. P. (Ed.), Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. Agriculture Handbk 480. U.S. Dep. Agric., Agric. Res. Serv., Washington, D.C. vi + 545 pp.Google Scholar
Cloutier, C. and Mackauer, M.. 1979. The effect of parasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on the food budget of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 57: 16051611.CrossRefGoogle Scholar
Cloutier, C. and Mackauer, M.. 1980. The effect of superparasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on the food budget of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). Can. J. Zool. 58: 241244.CrossRefGoogle Scholar
Cloutier, C., McNeil, J. N., and Régnière, J.. 1981. Fecundity, longevity, and sex ratio of Aphidius nigripes (Hymenoptera: Aphidiidae) parasitizing different stages of its host, Macrosiphum euphorbiae (Homoptera: Aphididae). Can. Ent. 113: 193198.CrossRefGoogle Scholar
Cooke, W. C. 1963. Ecology of the pea aphid in the Blue Mountain area of eastern Washington and Oregon. U.S. Dep. Agric. Tech. Bull. 1287. 48 pp.Google Scholar
Dixon, A. F. G. 1959. An experimental study of the searching behaviour of the predatory coccinellid Adalia decempunctata (L.). J. Anim. Ecol. 28: 259281.CrossRefGoogle Scholar
Dransfield, R. D. 1979. Aspects of host-parasitoid interactions of two aphid parasitoids, Aphidius urticae (Haliday) and Aphidius uzbeckistanicus (Luzhetski) (Hymenoptera, Aphidiidae). Ecol. Ent. 4: 307316.CrossRefGoogle Scholar
Force, D. C. 1974. Ecology of insect host-parasitoid communities. Science 184: 624632.CrossRefGoogle ScholarPubMed
Force, D. C. and Messenger, P. S.. 1964. Fecundity, reproductive rates and innate capacity for increase of three parasites of Therioaphis maculata (Buckton). Ecology 45: 706715.CrossRefGoogle Scholar
Gilbert, N. and Gutierrez, A. P.. 1973. A plant-aphid-parasite relationship. J. Anim. Ecol. 42: 323340.CrossRefGoogle Scholar
Gonzalez, D., White, W., Hall, J., and Dickson, R. C.. 1978. Geographical distribution of Aphidiidae (Hym.) imported to California for biological control of Acyrthosiphon kondoi and Acyrthosiphon pisum (Hom.: Aphididae). Entomophaga 23: 239248.CrossRefGoogle Scholar
Hafez, M. 1961. Seasonal fluctuations of population density of the cabbage aphid, Brevicoryne brassicae (L.), in the Netherlands, and the role of its parasite, Aphidius (Diaeretiella) rapae (Curtis). Diss. agric. Univ. Wageningen. 104 pp.Google Scholar
Hagen, K. S. and Schlinger, E. I.. 1960. Imported Indian parasite of pea aphid established in California. Calif. Agric. 14: 56.Google Scholar
Hagen, K. S. and van den Bosch, R.. 1968. Impact of pathogens, parasites, and predators on aphids. A. Rev. Ent. 13: 325384.CrossRefGoogle Scholar
Hart, J.'t, de Jonge, J., Collé, C., Dicke, M., van Lenteren, J. C., and Ramakers, P.. 1978. Host selection, host discrimination and functional response of Aphidius matricariae Haliday (Hymenoptera: Braconidae), a parasite of the green peach aphid, Myzus persicae (Sulz.). Med. Fac. Landbouww. Rijksuniv. Gent 43: 441453.Google Scholar
Hassell, M. P. 1978. The Dynamics of Arthropod Predator-Prey Systems. Princeton Univ. Press, Princeton, N.J. vii + 237 pp. (Monographs in Population Biology, 13).Google ScholarPubMed
Hassell, M. P., Lawton, J. H., and Beddington, J. R.. 1977. Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 46: 249262.CrossRefGoogle Scholar
Hassell, M. P. and May, R. M.. 1973. Stability in insect host-parasite models. J. Anim. Ecol. 42: 693736.CrossRefGoogle Scholar
Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Ent. 91: 385398.CrossRefGoogle Scholar
Huffaker, C. B., Simmonds, F. J., and Laing, J. E.. 1976. The theoretical and empirical basis of biological control. pp. 41–78 in Huffaker, C. B. and Messenger, P. S. (Eds.), Theory and Practice of Biological Control. Academic Press, New York, San Francisco and London. xxi + 788 pp.Google Scholar
Mackauer, M. 1971. Acyrthosiphon pisum (Harris), pea aphid (Homoptera: Aphididae). pp. 3–10 in Biological Control Programmes against Insects and Weeds in Canada 1959–1968. Tech. Commun. 4. Commonwealth Agric. Bureaux, Farnham Royal. x + 266 pp.Google Scholar
Mackauer, M. 1973. Host selection and host suitability in Aphidius smithi (Hymenoptera: Aphidiidae). pp. 20–29 in Lowe, A. D. (Ed.), Perspectives in Aphid Biology. Caxton Press, Christchurch, N.Z.123 pp.Google Scholar
Mackauer, M. 1976. The sex ratio in field populations of some aphid parasites. Ann. ent. Soc. Am. 69: 453456.CrossRefGoogle Scholar
Mackauer, M. 1982. Fecundity and host utilization of the aphid parasite Aphelinus semiflavus (Hymenoptera: Aphelinidae) at two host densities. Can. Ent. 114: 721726.CrossRefGoogle Scholar
Mackauer, M. and Bisdee, H. E.. 1965. Two simple devices for rearing aphids. J. econ. Ent. 58: 365366.CrossRefGoogle Scholar
Mackauer, M. and Henkelman, D. H.. 1975. Effect of light-dark cycles on adult emergence in the aphid parasite Aphidius smithi. Can. J. Zool. 53: 12011206.CrossRefGoogle Scholar
Mackauer, M. and Stary, P.. 1967. World Aphidiidae (Hym. Ichneumonoidea). Le François, Paris. 195 pp. (Index of Entomophagous Insects.)Google Scholar
Mackauer, M. and van den Bosch, R.. 1973. General applicability of evaluation results. J. appl. Ecol. 10: 330335.Google Scholar
Messenger, P. S. 1964. Use of life tables in a bioclimatic study of an experimental aphid-braconid wasp hostparasite system. Ecology 45: 119131.CrossRefGoogle Scholar
Messenger, P. S. 1968. Bioclimatic studies of the aphid parasite Praon exsoletum. 1. Effects of temperature on the functional response of females to varying host densities. Can. Ent. 100: 728741.CrossRefGoogle Scholar
Messenger, P. S. 1970. Bioclimatic inputs to biological control and pest management programs. pp. 84–99 in Rabb, R. L. and Guthrie, F. E. (Eds.), Concepts of Pest Management. North Carolina State Univ., Raleigh, N.C. xi + 242 pp.Google Scholar
Murdoch, W. W. 1973. The functional response of predators. J. appl. Ecol. 10: 335342.Google Scholar
Pielou, E. C. 1977. Mathematical Ecology. Wiley, New York. x + 385 pp.Google Scholar
Rogers, D. 1972. Random search and insect population models. J. Anim. Ecol. 41: 369383.CrossRefGoogle Scholar
Thompson, D. J. 1975. Towards a predator-prey model incorporating age-structure: the effects of predator and prey size in the predation of Daphnia magna by Ischnura elegans. J. Anim. Ecol. 44: 907916.CrossRefGoogle Scholar
van den Bosch, R., Lagace, C. F., and Stem, V. M.. 1967. The interrelationship of the aphid, Acyrthosiphon pisum, and its parasite, Aphidius smithi, in a stable environment. Ecology 48: 9931000.CrossRefGoogle Scholar
van den Bosch, R., Schlinger, E. I., Lagace, C. F., and Hall, J. C.. 1966. Parasitization of Acyrthosiphon pisum by Aphidius smithi, a density-dependent process in nature (Homoptera: Aphididae) (Hymenoptera: Aphidiidae). Ecology 47: 10491055.CrossRefGoogle Scholar
Wiackowski, S. K. 1962. Studies on the biology and ecology of Aphidius smithi Sharma & Subba Rao (Hymenoptera, Braconidae), a parasite of the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera, Aphididae). Polskie Pismo ent. 32: 253310.Google Scholar