Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T20:31:27.729Z Has data issue: false hasContentIssue false

ROOSTING, PERCHING, AND HABITAT SELECTION IN ARGIA VIVIDA HAGEN AND AMPHIAGRION ABBREVIATUM (SELYS) (ODONATA: COENAGRIONIDAE), TWO DAMSELFLIES INHABITING GEOTHERMAL SPRINGS

Published online by Cambridge University Press:  31 May 2012

Gordon Pritchard
Affiliation:
Division of Ecology, Department of Biological Sciences, The University of Calgary, Calgary, Alberta, Canada T2N 1N4
Andrea Kortello
Affiliation:
Division of Ecology, Department of Biological Sciences, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Abstract

Although Amphiagrion abbreviatum (Selys) and Argia vivida Hagen often occur at the same geothermally heated springs in western Canada and the United States, they differ markedly in their abundance at any particular site. There is no relationship between crude data on water temperature, conductivity, or aquatic vegetation and the relative abundance of the two species, but there is a striking correlation with presence or absence of trees. The absence of A. abbreviatum from heavily treed areas is associated with the paucity of suitable daytime perching sites, and there may be competitive pressure exerted by A. vivida for the perching sites that are available. Argia vivida does not live at open sites because it requires trees for night-time roosts. Argia vivida roosted higher than A. abbreviatum in cages and held the body at a greater angle from the cage wall. The roosting posture of A. vivida is probably related to interception of solar radiation in the morning, and the body positions of both species possibly provide defence against predation.

Résumé

Bien qu’Amphiagrion abbreviatum (Sélys) et Argia vivida Hagen fréquentent souvent les mêmes sources géothermiques dans l’ouest du Canada et des États-Unis, elles diffèrent toujours fortement par leur abondance à un site donné. Aucune des données brutes, température de l’eau, conductivité ou végétation aquatique, ne peut expliquer l’abondance relative des deux espèces, mais il existe une corrélation très évidente entre leur abondance et la présence ou l’absence d’arbres. L’absence d’A. abbreviatum des boisés denses s’explique par la rareté de perchoirs de jour appropriés et A. vivida exerce probablement une forte pression de compétition pour les perchoirs disponibles. Argia vivida ne fréquente pas les terrains ouverts car des perchoirs de nuit lui sont essentiels. La nuit, A. vivida se perche plus haut qu’A. abbreviatum dans des cages et l’angle entre son corps et la paroi de la cage est plus grand. Cette posture s’explique sans doute par son besoin d’intercepter les rayons solaires le matin, et les postures respectives des deux espèces ont peut-être aussi pour but la défense contre les prédateurs.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anholt, B.R. 1994. Cannibalism and early instar survival in a larval damselfly. Oecologia 99: 6065.CrossRefGoogle Scholar
Askew, R. 1982. Roosting and resting site selection by coenagrionid damselflies. Advances in Odonatology 1: 18.Google Scholar
Bick, G.H., Bick, J.C., and Hornuff, L.E.. 1976. Behavior of Chromagrion conditum (Hagen) adults (Zygoptera: Coenagrionidae). Odonatologica 5: 129141.Google Scholar
Buchwald, R. 1989. Die Bedeutung de Vegetation für die Habitatbindung einiger Libellenarten der Quellmoore und Fliessgewasser. Phytocoenologia 17: 307448.CrossRefGoogle Scholar
Buchwald, R. 1992. Vegetation and dragonfly fauna—characteristics and examples of biocoenological field studies. Vegetatio 101: 99107.CrossRefGoogle Scholar
Cannings, S.G., and Cannings, R.. 1994. The Odonata of the northern cordilleran peatlands of North America. Memoirs of the Entomological Society of Canada 169: 89110.CrossRefGoogle Scholar
Conrad, K.F., and Pritchard, G.. 1988. The reproductive behavior of Argia vivida Hagen: an example of a female-control mating system (Zygoptera:Coenagrionidae). Odonatologica 17: 179185.Google Scholar
Conrad, K.F., and Pritchard, G.. 1989. Female dimorphism and physiological colour change in the damselfly Argia vivida Hagen (Odonata: Coenagrionidae). Canadian Journal of Zoology 67: 298304.CrossRefGoogle Scholar
Conrad, K.F., and Pritchard, G.. 1990. Pre-oviposition mate-guarding and mating behaviour of Argia vivida (Odonata: Coenagrionidae). Ecological Entomology 15: 363370.CrossRefGoogle Scholar
Corbet, P.S. 1962. A Biology of Dragonflies. Witherby, London.Google Scholar
Corbet, P.S. 1980. Biology of Odonata. Annual Review of Entomology 25: 189217.CrossRefGoogle Scholar
Corbet, P.S. 1983. Odonata in phytotelmata. pp. 2954in Frank, J.H., and Lounibos, L.P. (Eds.), Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus, Medford, NJ.Google Scholar
dell'Anna, L., Utzeri, C., and Belfiore, C.. 1990. Perching behaviour in Trithemis annulata (Pal. De Beauv.) (Anisoptera: Libellulidae). Odonatologica 19: 375380.Google Scholar
Dionne, M., Butler, M., and Folt, C.. 1990. Plant-specific expression of antipredator behaviour by larval damselflies. Oecologia 83: 371377.CrossRefGoogle ScholarPubMed
Fincke, O.M. 1992. Interspecific competition for tree holes: Consequences for mating systems and coexistence in Neotropical damselflies. American Naturalist 139: 80101.CrossRefGoogle Scholar
Hargeby, A., Stalhandske, P., Svensson, M., Kullberg, A., and Peterson, R.C. Jr., 1994. Abundance, size distribution, and predation efficiency of damselfly larvae (Zygoptera) in the Humex Lake Skjervatjern 1989–1992. Environment International 20: 343348.CrossRefGoogle Scholar
Hassan, A.T. 1976. Studies on roosting behaviour of Palpopleura lucia lucia (Drury) and Acisoma panorpoides inflatum Selys (Anisoptera: Libellulidae). Odonatologica 5: 313329.Google Scholar
Henrikson, B.I. 1993. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 16: 143153.CrossRefGoogle Scholar
Johnson, D.M., and Crowley, P.H. 1980. Habitat and seasonal segregation among coexisting odonate larvae. Odonatologica 9: 297308.Google Scholar
Lenz, N. 1991. The importance of abiotic and biotic factors for the structure of odonate communities of ponds (Insecta: Odonata). Faunistisch-oekolologische Mitteilungen 6: 175189.Google Scholar
Martens, A. 1991. Plasticity of mate-guarding and oviposition behavior in Zygonyx natalensis (Martin) (Anisoptera: Libellulidae). Odonatologica 20: 293302.Google Scholar
May, M.L. 1976. Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecological Monographs 46: 132.CrossRefGoogle Scholar
May, M.L. 1991. Thermal adaptations of dragonflies, revisited. Advances in Odonatology 5: 7188.Google Scholar
McGeoch, M.A., and Samways, M.J.. 1991. Dragonflies and the thermal landscape: implications for their conservation (Anisoptera). Odonatologica 20: 303320.Google Scholar
McPeek, M.A. 1990 a. The determination of species composition in the Enallagma damselfly assemblage of permanent lakes. Ecology 71: 8393.CrossRefGoogle Scholar
McPeek, M.A. 1990 b. Behavioral differences between Enallagma species influencing differential vulnerability to predators. Ecology 71: 17141726.CrossRefGoogle Scholar
Michiels, N.K., and Dhont, A.A.. 1990. Costs and benefits associated with oviposition site selection in the dragonfly Sympetrum danae (Odonata: Libellulidae). Animal Behaviour 40: 668678.CrossRefGoogle Scholar
Neubauer, K., and Rehfeldt, G., 1995. Roosting site selection in the damselfly species Calopteryx haemorrhoidalis (Odonata: Calopterygidae). Entomologia Generalis 19: 291302.CrossRefGoogle Scholar
Nomakuchi, S. 1992. Male reproductive polymorphism and form-specific habitat utilization of the damselfly Mnais pruinosa (Zygoptera: Calopterygidae). Ecological Research 7: 8796.CrossRefGoogle Scholar
O'Farrell, A.F. 1971. Roosting and related activities in some Australian Zygoptera. Journal of Entomology (A) 46: 7987.Google Scholar
Pritchard, G. 1982. Life history strategies in dragonflies and the colonization of North America by the genus Argia (Odonata: Coenagrionidae). Advances in Odonatology 1: 227241.Google Scholar
Pritchard, G. 1991. Insects in thermal springs. Memoirs of the Entomological Society of Canada 155: 89106.CrossRefGoogle Scholar
Pritchard, G., and Leggott, M.A.. 1987. Temperature, incubation rates and origins of dragonflies. Advances in Odonatology 3: 121126.Google Scholar
Sokal, R.R., and Rohlf, F.J. 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd ed. Freeman, New York. 887 pp.Google Scholar
Thompson, D.J. 1990. On the biology of the damselfly Nosostica kalumburu Watson & Theischinger (Zygoptera: Protoneuridae). Biological Journal of the Linnean Society 40: 347356.CrossRefGoogle Scholar
van Everdingen, R.O. 1972. Thermal and Mineral Springs in the Southern Rocky Mountains of Canada. Environment Canada, Information Canada, Ottawa 1972. 151 pp.Google Scholar
Westfall, M.J. Jr., and May, M.L.. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.Google Scholar
Wildermuth, H. 1993. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): an experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22: 2744.Google Scholar
Zahner, R. 1960. Uber die Bindung der mitteleuropäischen Calopteryx-Arten (Odonata, Zygoptera) an den Lebensraum des strömenden Wassers: II. Der Anteil der Imagines an der Biotopbindung. Internationale Revue der Gesamten Hydrobiologie 45: 101123.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall Inc., Englewood Cliffs, NJ. 718 pp.Google Scholar