Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T20:54:30.555Z Has data issue: false hasContentIssue false

Screening of Beauveria bassiana (Hyphomycetes) isolates against Choristoneura rosaceana (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  31 May 2012

Silvia I. Todorova
Affiliation:
Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
Daniel Coderre
Affiliation:
Département des Sciences Biologiques, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
Charles Vincent*
Affiliation:
Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Québec, Canada J3B 3E6
Jean-Charles Côté
Affiliation:
Horticultural Research and Development Centre, Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Québec, Canada J3B 3E6
*
1Corresponding author (e-mail: vincentch@em.agr.ca).

Abstract

Twenty-three isolates of Beauveria bassiana (Balsamo) Vuillemin from different hosts and geographical origins were evaluated under laboratory conditions for various aspects of virulence against 2- to 3-d-old third instars of the obliquebanded leafroller, Choristoneura rosaceana (Harris), a pest of apple, Malus domestica Borkhausen (Rosaceae), and several other orchard crops in North America. When submerged in a solution containing 107 conidia/mL, all B. bassiana isolates caused more than 66% larval and pupal mortality 60 d following treatment. Isolates 14, 16, 1525, 2727, and 2990 caused the highest (80–89%) larval and pupal mortality against C. rosaceana. Relative to the control, isolate 63 significantly increased and isolate 44860 significantly decreased larval development time. Isolates 37, 2727, and 2990 significantly decreased C. rosaceana pupal weight. Isolates 139, 2727, and 2990 significantly decreased the number of emerging females. In view of their larvicidal effects, as well as their carry-over effects on pupae and adult females, isolates 2727 and 2990 showed the best mycoinsecticidal potential against C. rosaceana.

Résumé

Vingt-trois isolats de Beauveria bassiana (Balsamo) Vuillemin provenant d'hôtes et d'origines géographiques différents ont été évalués en conditions de laboratoire pour déterminer différents aspects de leur virulence contre des larves de troisième stade âgées de 2 à 3 jours de la tordeuse à bandes obliques, Choristoneura rosaceana (Harris), un ravageur des vergers de pommiers, Malus domestica Borkhausen (Rosaceae), et de plusieurs autres cultures en Amérique du Nord. Soixante jours après une submersion dans une solution contenant 107 conidies/mL, tous les isolats ont causé plus de 66% de mortalités larvaire et pupale. Les isolats 14, 16, 1525, 2727 et 2990 ont causé la plus forte (80–89%) mortalité des larves et des pupes de C. rosaceana. Par rapport au témoin, l'isolat 63 a augmenté et l'isolat 44860 a diminué signifïcativement le temps de développement larvaire. Les isolats 37, 2727 et 2990 ont signifïcativement fait diminuer le poids des pupes de C. rosaceana. Les isolats 139, 2727 et 2990 ont fait diminuer de façon significative le pourcentage d'adultes femelles qui ont émergés suite au traitement. En raison de leurs effets larvicides, et de leurs effets délétères sur les pupes et les adultes femelles, les isolats 2727 et 2990 ont démontré le meilleur potentiel en tant que mycoinsecticide contre C. rosaceana.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abacus Concepts Inc. 1989. SuperANOVA user's guide. Calabasas, California: Brain-Power IncGoogle Scholar
Carrière, Y. 1992. Host plant exploitation within a population of a generalist herbivore, Choristoneura rosaceana. Entomologia Experimentalis et Applicata 65: 110Google Scholar
Chapman, P.J., Lienk, S.E. 1971. Tortricid fauna of apple in New York; including an account of apple's occurrence in the State, especially as a naturalized plant. pp 8790in New York State Agricultural Experimental Station (Geneva, New York) Special PublicationGoogle Scholar
Croft, B.A. 1990. Arthropod biological control agents and pesticides. New York: WileyGoogle Scholar
Faizi, R. 1978. Effet d'une infection chronique à Beauveria bassiana (Fungi Imperfecti, Moniliales) sur le potentiel biotique de Chilo suppressalis (Walker) (Lepidoptera, Pyralidae, Crambinae). Thèse de 3ème cycle, Université Paris XI, OrsayGoogle Scholar
Fargues, J. 1972. Étude des conditions d'infection des larves de doryphore Leptinotarsa decemlineata Say par Beauveria bassiana (Bals.) Vuill. (Fungi Imperfecti). Entomophaga 17: 319–37Google Scholar
Feng, Z., Carruthers, R.I., Roberts, D.W., Robson, D.S. 1985. Age-specific dose-mortality effects of Beauveria bassiana (Deuteromycotina: Hyphomycetes) on the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology 46: 259–64Google Scholar
Feng, Z., Carruthers, R.I., Larkin, T.S. 1988. A phenology model and field evaluation of Beauveria bassiana (Bals.) Vuillemin (Deuteromycotina: Hyphomycetes) mycosis of the European corn borer, Ostrinia nubilalis (Hbn.) (Lepidoptera: Pyralidae). The Canadian Entomologist 120: 133–44Google Scholar
Hall, R.A. 1976. A bioassay of the pathogenicity of Verticillium lecanii conidiospores on the aphid, Macrosiphoniella sanborni. Journal of Invertebrate Pathology 27: 41–8Google Scholar
Ibrahim, Y.B., Low, W. 1993. Potential of mass-production and field efficacy of isolates of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus against Plutella xylostella. International Journal of Pest Management 39: 288–92Google Scholar
Knutson, A.E., Gilstrap, F.E. 1990. Seasonal occurrence of Beauveria bassiana in the Southwestern corn borer (Lepidoptera: Pyralidae) in the Texas high plains. Journal of the Kansas Entomological Society 63: 243–51Google Scholar
Lawson, D.S., Reissig, W.H., Smith, C.M. 1997. Response of larval and adult oblique banded leafroller (Lepidoptera:Tortricidae) to selected insecticides. Journal of Economic Entomology 90: 1450–7CrossRefGoogle Scholar
Lewis, L.C., Bing, L.A. 1991. Bacillus thuringiensis Berliner and Beauveria bassiana (Balsamo) Vuillemin for European corn borer control: potential for immediate and season-long suppression. The Canadian Entomologist 123: 387–93Google Scholar
Li, Z., Liu, L. 1990. Interaction of fungal infection and nutritional physiology of the Masson's pine caterpillar and impact of the infection on fecundity of the caterpillar. pp 170–2 in Proceedings of the Vth International Colloquium on Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20–24 August 1990Google Scholar
McCoy, C.W., Beavers, G.M., Tarrant, C.A. 1985. Susceptibility of Artipus floridanus to different isolates of Beauveria bassiana. Florida Entomologist 68: 402–9Google Scholar
McDowell, J.M., Funderburk, J.E., Boucias, D.G., Gilreath, M.E., Lynch, R.E. 1990. Biological activity of Beauveria bassiana against Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on leaf substrates and soil. Environmental Entomology 19: 137–41Google Scholar
Pree, D.J., Whitty, K.J., Pogoda, M.K., Bittner, L.A. 2001. Occurrence of resistance to insecticides in populations of the obliquebanded leafroller, from orchards in Southern Ontario. The Canadian Entomologist 133: 93103Google Scholar
Reissig, W.H., Stanley, B.H., Hebding, H.E. 1986. Azinphosmethyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology 79: 329–33Google Scholar
Shorey, H.H., Hale, R.L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522–4Google Scholar
Smirle, M.J., Vincent, C., Zurowski, C., Rancourt, B. 1998. Azinphosmethyl resistance in the obliquebanded leafroller, Choristoneura rosaceana: reversion in the absence of selection and relationship to detoxication enzyme activity. Pesticide Biochemistry and Physiology 61: 183–9CrossRefGoogle Scholar
Todorova, S.I., Côté, J-C, Martel, P., Coderre, D. 1994. Heterogeneity of two Beauveria bassiana strains revealed by biochemical tests, protein profiles and bio-assays on Leptinotarsa decemlineata (Col.: Chrysomelidae) and Coleomegilla maculata lengi (Col.: Coccinellidae) larvae. Entomophaga 39: 159–69Google Scholar
Todorova, S.I., Côté, J-C, Coderre, D. 1998. Distinction between Beauveria and Tolypocladium by carbohydrate utilization. Mycological Research 102: 81–7Google Scholar
Vey, A., Fargues, J. 1977. Histological and ultrastructural studies of Beauveria bassiana infection in Leptinotarsa decemlineata larvae during ecdysis. Journal of Invertebrate Pathology 30: 207–15Google Scholar
Zar, J.H. 1996. Biostatistical analysis. 3rd edition. Upper Saddle River, New Jersey: Prentice Hall IncGoogle Scholar