Skip to main content
×
Home

TEMPERATURE-DEPENDENT DEVELOPMENT OF THE MOUNTAIN PINE BEETLE (COLEOPTERA: SCOLYTIDAE) AND SIMULATION OF ITS PHENOLOGY

  • Barbara J. Bentz (a1), Jesse A. Logan (a2) and Gene D. Amman (a1)
Abstract
Abstract

Temperature-dependent development of the egg, larval, and pupal life-stages of the mountain pine beetle (Dendroctonus ponderosae Hopkins) was described using data from constant-temperature laboratory experiments. A phenology model describing the effect of temperature on the temporal distribution of the life-stages was developed using these data. Phloem temperatures recorded in a beetle-infested lodgepole pine (Pinus contorta Douglas) were used as input to run the model. Results from model simulations suggest that inherent temperature thresholds in each life-stage help to synchronize population dynamics with seasonal climatic changes. This basic phenological information and the developed model will facilitate both research and management endeavors aimed at reducing losses in lodgepole pine stands caused by mountain pine beetle infestations.

Résumé

On trouvera ici la description du développement de l’oeuf, de la larve et de la nymphe sous l’influence de la température chez le Dendroctone du Pin ponderosa (Dendroctonus ponderosae Hopkins), description élaborée à la suite d’observations en laboratoire dans des conditions constantes de température. Les données ont également servi à construire un modèle de la phénologie de l’insecte qui tient compte de l’effet de la température sur la répartition temporelle des divers stades. Les températures du phloème enregistrées dans un Pin ponderosa infesté de coléoptères ont été intégrées au modèle. Les résultats des simulations indiquent que les seuils thermiques inhérents à chacun des stades contribuent à synchroniser la dynamique de la population avec les changements climatiques saisonniers. Cette information phénologique de base et le modèle que nous avons mis au point faciliteront les tentatives de recherche et d’aménagement entreprises dans le but de limiter, dans les forêts de Pins ponderosa, les pertes occasionnées par les infestations de dendroctones.

[Traduit par la rédaction]

Copyright
References
Hide All
Amman G.D. 1973. Population changes of the mountain pine beetle in relation to elevation. Environ. Ent. 2(4): 541547.
Amman G.D., and Cole W.E.. 1983. Mountain pine beetle dynamics in lodgepole pine forests. Part II: Population dynamics. USDA For. Serv. Gen. Tech. Rep. INT-145.
Bartos D.L., and Amman G.D.. 1989. Microclimate: An alternative to tree vigor as a basis for mountain pine beetle infestations. USDA For. Serv. Res. Pap. INT-400.
Beal J.A. 1934. Relation of air and bark temperatures of infested ponderosae pines during subzero weather. J. econ. Ent. 27: 11321139.
Bedard W.D. 1940. The relation of lipid and moisture content to cold-hardiness of mountain pine beetle larvae. Unpubl. Rep., USDA For. Serv.
Berryman A.A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. Bioscience 22(10): 598602.
Cole W.E. 1981. Some risks and causes of mortality in mountain pine beetle populations: A long-term analysis. Res. Popul. Ecol. 23(1): 116144.
Kramer D.A., Stinner R.E., and Hain F.P.. 1991. Time versus rate in parameter estimation of nonlinear temperature-dependent development models. Environ. Ent. 20: 484488.
Kvalseth T.O. 1985. Cautionary note about R 2. Am. Statistician 39: 279285.
Langor D.W. 1989. Host effects on the phenology, development, and mortality of field populations of the mountain pine beetle. Can. Ent. 121: 149157.
Logan J.A. 1988. Toward an expert system for development of pest simulation models. Environ. Ent. 17(2): 359376.
Logan J.A., and Amman G.D.. 1986. A distribution model for egg development in mountain pine beetle. Can. Ent. 118: 361372.
Logan J.A., Stinner R.E., Rabb R.L., and Bacheler J.S.. 1979. A descriptive model for predicting spring emergence of Heliothis zea populations in North Carolina. Environ. Ent. 8: 141146.
Logan J.A., Wolkind D.J., Hoyt S.C., and Tanigoshi L.K.. 1976. An analytical model for description of temperature dependent rate phenomenon in arthropods. Environ. Ent. 5: 11331140.
McCambridge W.F. 1974. Influence of low temperatures on attack, oviposition, and larval development of mountain pine beetle Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Ent. 106: 979984.
Powell J.M. 1967. A study of habitat temperatures of the bark beetle Dendroctonus ponderosae in lodgepole pine. Agric. Meteor. 4: 189201.
Régniere J. 1984. A method of describing and using the variability in development rates for the simulation of insect phenology. Can. Ent. 116: 13671376.
Reid R.W. 1962. Biology of the mountain pine beetle, Dendroctonus monticolae, in the east Kootenay region of British Columbia. I. Life cycle, brood development, and flight periods. Can. Ent. 94: 531538.
Reid R.W. 1963. Biology of the mountain pine beetle, Dendroctonus monticolae, in the east Kootenay region of British Columbia. III. Interactions between the beetle and its host, with emphasis on brood mortality and survival. Can. Ent. 95: 225238.
Reid R.W., and Gates H.. 1970. Effect of temperature and resin on hatch of eggs of the mountain pine beetle (Dendroctonus ponderosae). Can. Ent. 102: 617622.
Safranyik L., and Whitney H.S.. 1985. Development and survival of axenically reared mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), at constant temperatures. Can. Ent. 117: 185192.
Sharpe P.J.H., Curry G.L., DeMichele D.W., and Cole C.L.. 1977. Distribution model of organisms development times. J. Theor. Biol. 66: 2128.
Stinner R.E., Butler G.D., Bacheler J.S., and Tuttle C.. 1975. Simulation of temperature dependent development in population dynamic models. Can. Ent. 107: 11671174.
Wagner T.L., Wu H., Sharpe P.J.H., and Coulson R.N.. 1984. Modeling distributions of insect development time: A literature review and application of the Weibull Function. Ann. ent. Soc. Am. 77: 475483.
Whitney H.S., and Spanier O.J.. 1982. An improved method for rearing axenic mountain pine beetles. Can. Ent. 114: 10951100.
Wygant N.D. 1942. Effects of low temperatures on the Black Hills beetle (Dendroctonus ponderosae). Unpubl. Rep., USDA For. Serv. Rocky Mountain Forest and Range Exp. Sta. 65 pp.
Yuill J.S. 1941. Cold hardiness of two species of bark beetle in California forests. J. econ. Ent. 34: 702709.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 319 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.