Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T21:36:18.823Z Has data issue: false hasContentIssue false

TOXICITY OF SELECTED INSECTICIDES TO SEVERAL LIFE STAGES OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA (SAY)

Published online by Cambridge University Press:  31 May 2012

S.A. Hilton
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, Ontario, Canada N5V 4T3
J.H. Tolman
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, Ontario, Canada N5V 4T3
D.C. MacArthur
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, Ontario, Canada N5V 4T3
C.R. Harris
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Residual and contact toxicities of several insecticides to larvae and adults of insecticide-susceptible (four insecticides) and insecticide-resistant (three insecticides) Colorado potato beetle, Leptinotarsa decemlineata (Say), were measured in laboratory studies. For both methods of exposure, azinphosmethyl was the least toxic to all life stages tested. The residual toxicity of deltamethrin was at least 4.4-fold higher than either cypermethrin or endosulfan. With the insecticide-susceptible strain, residual toxicities of azinphosmethyl, endosulfan, and deltamethrin were, respectively, 3.5, 5.9, and 4.1 times higher to first instars than to adults and 1.2, 8.1, and 1.6 times higher to third instars than to adults. Contact toxicities of azinphosmethyl, endosulfan, and deltamethrin were, respectively, 3.3, 2.9, and 1.4 times higher to insecticide-susceptible third instars than to adults. In most comparisons, susceptibilities of fourth and third instars were similar. With the insecticide-resistant strain, azinphosmethyl, endosulfan, and deltamethrin were, respectively, 3.2, 1.6, and 8.0 times more toxic to third instars than to adults. The importance of differential life stage toxicity to current control recommendations for Colorado potato beetle is discussed.

Résumé

La toxicité résiduelle et la toxicité de contact de plusieurs insecticides ont été mesurées au cours de tests en laboratoire chez des larves et des adultes du Doryphore de la pomme de terre, Leptinotarsa decemlineata, sensibles aux insecticides (4 insecticides) ou résistants aux insecticides (3 insecticides). Avec les deux méthodes, l’azinphosméthyle est l’insecticide le moins toxique pour tous les stades du cycle. La toxicité résiduelle de la deltaméthrine est au moins 4,4 fois plus élevée que celle de la cyperméthrine ou de l’endosulfan. Chez la souche sensible aux insecticides, les toxicités résiduelles de l’azinphosméthyle, de l’endosulfan et de la deltaméthrine sont respectivement 3,5, 5,9 et 4,1 fois plus élevées pour les larves de premier stade que pour les adultes et 1,2, 8,1 et 1,6 fois plus élevées pour les larves de troisième stade que pour les adultes. Les toxicités de contact des mêmes insecticides sont 3,3, 2,9 et 1,4 fois plus élevées pour les larves de troisième stade que pour les adultes chez les doryphores sensibles aux insecticides. Dans la plupart des tests, la sensibilité des larves de quatrième et de troisième stades s’est avérée la même. Chez la souche résistante aux insecticides, l’azinphosméthyle, l’endosulphan et la deltaméthrine sont respectivement 3,2, 1,6 et 8,0 fois plus toxiques pour les larves de troisième stade que pour les adultes. L’influence qu’aura cette toxicité différentielle en fonction du stade du cycle sur les recommandations d’usage dans la lutte contre le Doryphore de la pomme de terre est examinée.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Boiteau, G., and Le Blanc, J.R.. 1992. Colorado potato beetle life stages. Agriculture Canada Publication 1878/E.Google Scholar
Boiteau, G., Parry, R.H., and Harris, C.R.. 1987. Insecticide resistance in New Brunswick populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). The Canadian Entomologist 119: 459463.CrossRefGoogle Scholar
Boiteau, G., Pelletier, Y., Misener, G.C., and Bernard, G.. 1994. Development and evaluation of a plastic trench barrier for protection of potato from walking adult Colorado beetles (Coleoptera: Chrysomelidae). Journal of Economic Entomology 87: 13251331.CrossRefGoogle Scholar
Casagrande, R.A. 1987. The Colorado potato beetle: 125 years of mismanagement. Bulletin of the Entomological Society of America 33: 142150.CrossRefGoogle Scholar
Ferro, D.N., Yuan, Q.-C., Slocombe, A., and Tuttle, A.F.. 1993. Residual activity of insecticides under field conditions for controlling the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 86: 511516.CrossRefGoogle Scholar
Follett, P.A., Gould, F., and Kennedy, G.G.. 1993. Comparative fitness of three strains of Colorado potato beetle (Coleoptera: Chrysomelidae) in the field: spatial and temporal variation in insecticide selection. Journal of Economic Entomology 86: 13241333.CrossRefGoogle Scholar
Georghiou, G.P. 1990. Overview of insecticide resistance. pp. 1841in Green, M.B., LeBaron, H.M., and Moberg, W.K. (Eds.), Managing Resistance to Agrochemicals. ACS (American Chemical Society) Symposium Series 421.Google Scholar
Hare, J.D. 1990. Ecology and management of the Colorado potato beetle. Annual Review of Entomology 35: 81100.CrossRefGoogle Scholar
Harris, C.R., and Svec, H.J.. 1976. Susceptibility of the Colorado potato beetle in Ontario to insecticides. Journal of Economic Entomology 69: 625629.CrossRefGoogle Scholar
Harris, C.R., and Svec, H.J.. 1981. Colorado potato beetle resistance to carbofuran and several other insecticides in Québec. Journal of Economic Entomology 74: 421424.CrossRefGoogle Scholar
Harris, C.R., and Turnbull, S.A.. 1986. Contact toxicity of some pyrethroid insecticides, alone and in combination with piperonyl butoxide, to insecticide-susceptible and pyrethroid-resistant strains of the Colorado potato beetle. (Coleoptera: Chrysomelidae). The Canadian Entomologist 118: 11731176.CrossRefGoogle Scholar
Hunt, D.W.A., and Whitfield, G.. 1996. Potato trap crops for control of Colorado potato beetle (Coleoptera: Chrysomelidae) in tomatoes. The Canadian Entomologist 128: 407412.CrossRefGoogle Scholar
Mahdavi, A. 1990. Metabolic mechanisms of resistance of the Colorado potato beetle (Coleoptera: Chrysomelidae) to synthetic pyrethroids, permethrin and fenvalerate. Ph.D. thesis, University of Guelph, Guelph, Ontario.Google Scholar
OMAFRA. 1996. 1996/1997 vegetable production recommendations. Ontario Ministry of Agriculture and Food Publication 363.Google Scholar
Roush, R.T. 1989. Designing resistance management programs: how can you choose? Pesticide Science 26: 423441.CrossRefGoogle Scholar
Turnbull, S.A., Tolman, J.H., and Harris, C.R.. 1988. Colorado potato beetle resistance to insecticides in Ontario, Canada. Proceedings of the Brighton Crop Protection Conference 1: 457464.Google Scholar
Weisz, R., Saunders, M., Smilowitz, Z., Huang, H., and Christ, B.. 1994. Knowledge-based reasoning in integrated resistance management: the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 87: 13841399.CrossRefGoogle Scholar
Zehnder, G.W. 1986. Timing of insecticides for control of Colorado potato beetle (Coleoptera: Chrysomelidae) in eastern Virginia based on differential susceptibility of life stages. Journal of Economic Entomology 79: 851856.CrossRefGoogle Scholar