Skip to main content
×
×
Home

Transport of fungal symbionts by mountain pine beetles

  • K.P. Bleiker (a1), S.E. Potter (a2), C.R. Lauzon (a2) and D.L. Six (a1)
Abstract

The perpetuation of symbiotic associations between bark beetles (Coleoptera: Curculionidae: Scolytinae) and ophiostomatoid fungi requires the consistent transport of fungi by successive beetle generations to new host trees. We used scanning electron microscopy and culture methods to investigate fungal transport by the mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins. MPB transports its two main fungal associates, Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield and Ophiostoma montium (Rumbold) von Arx, in sac-like mycangia on the maxillary cardines as well as on the exoskeleton. Although spores of both species of fungi were observed on MPB exoskeletons, often in pits, O. montium spores were generally more abundant than G. clavigera spores. However, a general scarcity of spores of either species on MPB exoskeletons compared with numbers on scolytines that lack sac-like mycangia indicates that fungal transport exteriorly on MPBs is incidental rather than adaptive. Conidia were the dominant spore type transported regardless of location or species; however, our results suggest that once acquired in mycangia, conidia may reproduce in a yeast-like form and even produce hypha-like strands and compact conidiophore-like structures. Fungi that propagate in mycangia may provide beetles with a continual source of inocula during the extended egg-laying period.

La perpétuation des associations symbiotiques entre les scolytes (Coleoptera: Curculionidae: Scolytinae) et les champignons ophiostomatoïdes nécessite un transport continu des champignons par les générations successives de coléoptères vers de nouveaux arbres hôtes. Le microscope électronique à balayage et des méthodes de culture nous ont servi à étudier le transport des champignons chez le dendroctone du pin ponderosa (MPB), Dendroctonus ponderosae Hopkins. MPB transporte ses deux champignons associés principaux, Grosmannia clavigera (Robinson-Jeffrey et Davidson) Zipfel, de Beer et Wingfield et Ophiostoma montium (Rumbold) von Arx, dans des mycanges en forme de sacs sur les cardos des maxilles et sur l’exosquelette. Bien qu’on observe les spores des deux champignons sur l’exosquelette de MPB, souvent dans des fosses, les spores d’O. montium sont généralement plus abondantes que les spores de G. clavigera. Cependant, la rareté générale des spores des deux espèces sur l’exosquelette de MPB par rapport à l’exosquelette de scolytinés qui n’ont pas de mycanges en forme de sacs indique que le transport externe de champignons sur MPB est accidentel plutôt qu’adaptatif. Quels que soit le site et l’espèce, les conidies sont le type dominant de spores transportées; cependant, nos observations indiquent qu’une fois entrées dans les mycanges, les conidies peuvent se reproduire en une forme de levure et même produire des filaments d’hyphes et des structures compactes semblables à des conidiophores. Les champignons qui se reproduisent dans les mycanges peuvent fournir aux coléoptères une source continue d’inoculum durant la longue période de ponte des oeufs.

[Traduit par la Rédaction]

Copyright
Corresponding author
1Corresponding author (e-mail: kbleiker@nrcan.gc.ca).
References
Hide All
Abrahamson, L.P., Chu, H.M., and Norris, D.M. 1967. Symbiotic interrelationships between microbes and ambrosia beetles. II. The organs of microbial transport and perpetuation in Trypodendron betulae and T. retusum (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 60: 11071110.
Ayres, M.P., Wilkens, R.T., Ruel, J.J., Lombardero, M.J., and Vallery, E. 2000. Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology, 81: 21982210.
Barras, S.J., and Perry, T.J. 1971. Gland cells and fungi associated with prothoracic mycangium of Dendroctonus adjunctus (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 64: 123126.
Barras, S.J., and Perry, T.J. 1972. Fungal symbionts in the prothoracic mycangium of Dendroctonus frontalis. Zeitschrift für Angewandte Entomologie, 71: 95104.
Batra, L.R. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science, 66: 213236. doi:10.2307/3626562.
Bleiker, K.P., and Six, D.L. 2007. Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environmental Entomology, 36: 13841396. PMID:18284766 doi:10.1603/0046-225X(2007)36[1384:DBOFAT]2.0.CO;2.
Bleiker, K.P., and Six, D.L. 2009. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microbial Ecology, 57: 191202. PMID:1854 5867 doi:10.1007/s00248-008-9395-6.
Brand, J.M., Bracke, J.W., Markovetz, A.J., Wood, D.L., and Browne, L.E. 1975. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature (London), 254(5496): 136137. PMID:804144 doi:10.1038/254136a0.
Bridges, J.R. 1981. Nitrogen fixing bacteria associated with bark beetles. Microbial Ecology, 7: 131138. doi:10.1007/BF02032495.
Coppedge, B.R., Stephen, F.M., and Felton, G.W. 1995. Variation in female southern pine beetle size and lipid content in relation to fungal associates. The Canadian Entomologist, 127: 145154.
Delalibera, I. Jr., Handelsman, J., and Raffa, K.F. 2005. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology, 34: 541547.
Furniss, M.M., Solheim, H., and Christiansen, E. 1990. Transmission of blue-stain fungi by Ips typographus (Coleoptera: Scolytidae) in Norway spruce. Annals of the Entomological Society of America, 83: 712716.
Furniss, M.M., Harvey, A.E., and Solheim, H. 1995. Transmission of Ophiostoma ips (Ophiostomatales: Ophiostomataceae) by Ips pini (Coleoptera: Scolytidae) to ponderosa pine in Idaho. Annals of the Entomological Society of America, 88: 653660.
Lee, S., Kim, J.J., and Breuil, C. 2006. Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae, and infested lodgepole pines in British Columbia. Fungal Diversity, 22: 91105.
Levieux, J., Lieutier, F., Moser, J.C., and Perry, T.J. 1989. Transportation of phytopathogenic fungi by the bark beetle Ips sexdentatus Boerner and associated mites. Journal of Applied Entomology, 108: 111.
Lewinsohn, D., Lewinsohn, E., Bertagnolli, C.L., and Patridge, A.D. 1994. Blue-stain fungi and their transport structures on the Douglas-fir beetle. Canadian Journal of Forest Research, 24: 22752283. doi:10.1139/x94-292.
Livingston, R.L., and Berryman, A.A. 1972. Fungus transport structures in the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). The Canadian Entomologist, 104: 17931800.
Moore, G.E. 1972. Microflora from the alimentary tract of healthy southern pine beetles, Dendroctonus frontalis (Scolytidae), and their possible relationship to pathogenicity. Journal of Invertebrate Pathology, 19: 7275. doi:10.1016/0022-2011(72)90191-7.
Paine, T.D., and Birch, M.C. 1983. Acquisition and maintenance of mycangial fungi by Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Environmental Entomology, 12: 13841386.
Raffa, K.F., and Berryman, A.A. 1983. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). The Canadian Entomologist, 115: 723734.
Reid, R.W., Whitney, H.S., and Watson, J.A. 1967. Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungi. Canadian Journal of Botany, 45: 11151126. doi:10.1139/b67-116.
Six, D.L. 2003 a. A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Canadian Journal of Forest Research, 33: 13311334. doi:10.1139/x03-047.
Six, D.L. 2003 b. Bark beetle — fungus symbioses. In Insect symbiosis. Edited by Bourtzis, K. and Miller, T.A.. CRC Press, New York. pp. 97114.
Six, D.L., and Bentz, B.J. 2007. Temperature determines symbiont abundance in a multipartite bark beetle — fungus ectosymbiosis. Microbial Ecology, 54: 112118. PMID:17264992 doi:10.1007/s00248-006-9178-x.
Six, D.L., and Paine, T. 1998. Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environmental Entomology, 27: 13931401.
Six, D.L., and Paine, T. 1999. Allozyme diversity and gene flow in Ophiostoma clavigerum (Ophiostomatales: Ophiostomataceae), the mycangial fungus of the Jeffrey pine beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Canadian Journal of Forest Research, 29: 324331. doi:10.1139/cjfr-29-3-324.
SPSS Inc. 2000. SPSS. Version 10.0. SPSS Inc., Chicago, Illinois.
Tsuneda, A., and Hiratsuka, Y. 1984. Sympodial and annellidic conidiation in Ceratocystis clavigera. Canadian Journal of Botany, 62: 26182624.
Upadhyay, H.P. 1981. A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, Athens, Georgia.
Whitney, H.S. 1971. Association of Dendroctonus ponderosae (Coleoptera: Scolytidae) with blue stain fungi and yeasts during brood development in lodgepole pine. The Canadian Entomologist, 103: 14951503.
Whitney, H.S., and Farris, S.H. 1970. Maxillary mycangium in the mountain pine beetle. Science (Washington, D.C.), 167(3914): 5455. PMID: 17759499 doi:10.1126/science.167.3914.54.
Yamaoka, Y., Hiratsuka, Y., and Maruyama, P.J. 1995. The ability of Ophiostoma clavigerum to kill mature lodgepole pine trees. European Journal of Forest Pathology, 25(6—7): 401404. doi:10.1111/j.1439-0329.1995.tb01355.x.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Canadian Entomologist
  • ISSN: 0008-347X
  • EISSN: 1918-3240
  • URL: /core/journals/canadian-entomologist
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed