Hostname: page-component-797576ffbb-bqjwj Total loading time: 0 Render date: 2023-12-01T10:44:25.187Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Simulation-based training in critical resuscitation procedures improves residents' competence

Published online by Cambridge University Press:  21 May 2015

Trevor S. Langhan*
Division of Emergency Medicine, University of Calgary, Calgary, Alta.
Ian J. Rigby
Division of Emergency Medicine, University of Calgary, Calgary, Alta.
Ian W. Walker
Division of Emergency Medicine, University of Calgary, Calgary, Alta.
Daniel Howes
Department of Emergency Medicine, Queen's University, Kingston, Ont.
Tyrone Donnon
Undergraduate Medical Education, University of Calgary, Calgary, Alta.
Jason A. Lord
Department of Critical Care, University of Calgary, Calgary, Alta.
Division of Emergency Medicine, University of Calgary, 1403 29th St. NW, Rm. C231, Calgary AB T2N 2T9;


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Residents must become proficient in a variety of procedures. The practice of learning procedural skills on patients has come under ethical scrutiny, giving rise to the concept of simulation-based medical education. Resident training in a simulated environment allows skill acquisition without compromising patient safety. We assessed the impact of a simulation-based procedural skills training course on residents' competence in the performance of critical resuscitation procedures.


We solicited self-assessments of the knowledge and clinical skills required to perform resuscitation procedures from a cross-sectional multidisciplinary sample of 28 resident study participants. Participants were then exposed to an intensive 8-hour simulation-based training program, and asked to repeat the self-assessment questionnaires on completion of the course, and again 3 months later. We assessed the validity of the self-assessment questionnaire by evaluating participants' skills acquisition through an Objective Structured Clinical Examination station.


We found statistically significant improvements in participants' ratings of both knowledge and clinical skills during the 3 self-assessment periods (p < 0.001). The participants' year of postgraduate training influenced their self-assessment of knowledge (F2,25 = 4.91, p < 0.01) and clinical skills (F2,25 = 10.89, p < 0.001). At the 3-month follow-up, junior-level residents showed consistent improvement from their baseline scores, but had regressed from their posttraining measures. Senior-level residents continued to show further increases in their assessments of both clinical skills and knowledge beyond the simulation-based training course.


Significant improvement in self-assessed theoretical knowledge and procedural skill competence for residents can be achieved through participation in a simulation-based resuscitation course. Gains in perceived competence appear to be stable over time, with senior learners gaining further confidence at the 3-month follow-up. Our findings support the benefits of simulation-based training for residents.

Original Research • Recherche originale
Copyright © Canadian Association of Emergency Physicians 2009



1.Kohn, LT, Corrigan, JM, Donaldson, MS, editors. To err is human: building a safer health system. Washington (DC): National Academies Press; 1999.Google Scholar
2.Kneebone, RL, Scott, W, Darzi, A,et al. Simulation and clinical practice: strengthening the relationship. Med Educ 2004;38:1095–102.Google Scholar
3.Ziv, A, Ben-David, S, Ziv, M. Simulation based medical education: an opportunity to learn from errors. Med Teach 2005;27:193–9.Google Scholar
4.Ziv, A, Wolpe, PR, Small, SD, et al. Simulation-based medical education: an ethical imperative. Acad Med 2003;78:783–8.Google Scholar
5.Newble, DI. Assessing clinical competence at the undergraduate level. Med Educ 1992;26:504–11.Google Scholar
6.Kneebone, R, Nestel, D, Wetzel, C, et al. The human face of simulation: patient-focused simulation training. Acad Med 2006;81:919–24.Google Scholar
7.Dawson, S. Procedural simulation: a primer. Radiology 2006;241:1725.Google Scholar
8.Vozenilek, J, Huff, JS, Reznek, M, et al. See one, do one, teach one: advanced technology in medical education. Acad Emerg Med 2004;11:1149–54.Google Scholar
9.Beaubien, JM, Baker, DP. The use of simulation for training teamwork skills in health care: how low can you go? Qual Saf Health Care 2004;13(Suppl 1):i51–6.Google Scholar
10.Gaba, DM. The future vision of simulation in health care. Qual Saf Health Care 2004;13(Suppl 1):i2–10.Google Scholar
11.Seropian, MA, Brown, K, Gavilanes, JS, et al. Simulation: not just a manikin. J Nurs Educ 2004;43:164–9.Google Scholar
12.Weller, J, Dowell, A, Kljakovic, M, et al. Simulation training for medical emergencies in general practice. Med Educ 2005;39:1154.Google Scholar
13.Norris, TE, Cullison, SW, Fihn, SD. Teaching procedural skills. J Gen Intern Med 1997;12(Suppl 2):S64–70.Google Scholar
14.Fincher, RM, Lewis, LA. Learning, experience, and self-assessment of competence of third-year medical students in performing bedside procedures. Acad Med 1994;69:291–5.Google Scholar
15.Lockyer, J. Multisource feedback in the assessment of physician competencies. J Contin Educ Health Prof 2003;23:412.Google Scholar