 $\mathrm {O}_{2n}$ and
$\mathrm {O}_{2n}$ and  $\mathrm {SO}_{2n}$
$\mathrm {SO}_{2n}$Published online by Cambridge University Press: 07 April 2025
Let F be a non-archimedean local field of characteristic not equal to 2. In this article, we prove the local converse theorem for quasi-split  $\mathrm {O}_{2n}(F)$ and
$\mathrm {O}_{2n}(F)$ and  $\mathrm {SO}_{2n}(F)$, via the description of the local theta correspondence between
$\mathrm {SO}_{2n}(F)$, via the description of the local theta correspondence between  $\mathrm {O}_{2n}(F)$ and
$\mathrm {O}_{2n}(F)$ and  $\mathrm {Sp}_{2n}(F)$. More precisely, as a main step, we explicitly describe the precise behavior of the
$\mathrm {Sp}_{2n}(F)$. More precisely, as a main step, we explicitly describe the precise behavior of the  $\gamma $-factors under the correspondence. Furthermore, we apply our results to prove the weak rigidity theorems for irreducible generic cuspidal automorphic representations of
$\gamma $-factors under the correspondence. Furthermore, we apply our results to prove the weak rigidity theorems for irreducible generic cuspidal automorphic representations of  $\mathrm {O}_{2n}(\mathbb {A})$ and
$\mathrm {O}_{2n}(\mathbb {A})$ and  $\mathrm {SO}_{2n}(\mathbb {A})$, respectively, where
$\mathrm {SO}_{2n}(\mathbb {A})$, respectively, where  $\mathbb {A}$ is a ring of adele of a global number field L.
$\mathbb {A}$ is a ring of adele of a global number field L.
J. H. has been supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1A01048645). Y. K. has been supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. RS-2022-0016551 and No. RS-2024-00415601 (G-BRL)) and by Chonnam National University (Grant number: 2022-0123). J. H. and S. K. have been supported by NRF grant (No. RS-2023-00237811).
 $L$
-packet
. Int. Math. Res. Not. IMRN 23(2017), 7051–7068.Google Scholar
$L$
-packet
. Int. Math. Res. Not. IMRN 23(2017), 7051–7068.Google Scholar $p$
-adic groups
. Israel J. Math. 126(2001), 239–261.10.1007/BF02784155CrossRefGoogle Scholar
$p$
-adic groups
. Israel J. Math. 126(2001), 239–261.10.1007/BF02784155CrossRefGoogle Scholar ${SO}_{2n}^{\ast }$
 in positive characteristic. Preprint, arXiv:2201.03119v1Google Scholar
${SO}_{2n}^{\ast }$
 in positive characteristic. Preprint, arXiv:2201.03119v1Google Scholar $GL(n)$
. Publ. Math. Inst. Hautes Études Sci 93(2001), 5–30.10.1007/s10240-001-8187-zCrossRefGoogle Scholar
$GL(n)$
. Publ. Math. Inst. Hautes Études Sci 93(2001), 5–30.10.1007/s10240-001-8187-zCrossRefGoogle Scholar ${GL}_n$
and the exterior and symmetric square
${GL}_n$
and the exterior and symmetric square 
 $\varepsilon$
-factors
. Duke Math. J. 166(2017) no. 11, 2053–2132.10.1215/00127094-2017-0001CrossRefGoogle Scholar
$\varepsilon$
-factors
. Duke Math. J. 166(2017) no. 11, 2053–2132.10.1215/00127094-2017-0001CrossRefGoogle Scholar $L$
values, and restriction problems in the representation theory of classical groups
. Astérisque 346(2012), 1–109.Google Scholar
$L$
values, and restriction problems in the representation theory of classical groups
. Astérisque 346(2012), 1–109.Google Scholar $I$
: epsilon dichotomy and local Langlands correspondence
. Compos. Math. 148(2012), 1655–1694.10.1112/S0010437X12000486CrossRefGoogle Scholar
$I$
: epsilon dichotomy and local Langlands correspondence
. Compos. Math. 148(2012), 1655–1694.10.1112/S0010437X12000486CrossRefGoogle Scholar $L$
-functions, Contemporary Mathematics, 664, American Mathematical Society, Providence, RI, 2016, pp. 105–117.Google Scholar
$L$
-functions, Contemporary Mathematics, 664, American Mathematical Society, Providence, RI, 2016, pp. 105–117.Google Scholar $L$
-functions and symplectic-orthogonal theta lifts
. J. Reine Angew. Math. 487(1997), 85–114.Google Scholar
$L$
-functions and symplectic-orthogonal theta lifts
. J. Reine Angew. Math. 487(1997), 85–114.Google Scholar ${\overset{\sim }{Sp}}_{2n}$
: The generic case. Preprint, arXiv:2212.05234
Google Scholar
${\overset{\sim }{Sp}}_{2n}$
: The generic case. Preprint, arXiv:2212.05234
Google Scholar $S{O}_{2n}$
. Preprint, 2022.Google Scholar
$S{O}_{2n}$
. Preprint, 2022.Google Scholar $S{O}_{2l}$
. Represent. Theory 29(2025), 209–255.Google Scholar
$S{O}_{2l}$
. Represent. Theory 29(2025), 209–255.Google Scholar $p$
-adic
$p$
-adic 
 ${GL}_n$
. Amer. J. Math. 140(2018), no. 5, 1399–1422.10.1353/ajm.2018.0035CrossRefGoogle Scholar
${GL}_n$
. Amer. J. Math. 140(2018), no. 5, 1399–1422.10.1353/ajm.2018.0035CrossRefGoogle Scholar $\gamma$
-factors. In: Weng, L. and Nakamura, I. (eds.), Arithmetic geometry and number theory, Series on Number Theory and its Applications, 1, World Scientific Publishing, Hackensack, NJ, 2006, pp. 1–28.Google Scholar
$\gamma$
-factors. In: Weng, L. and Nakamura, I. (eds.), Arithmetic geometry and number theory, Series on Number Theory and its Applications, 1, World Scientific Publishing, Hackensack, NJ, 2006, pp. 1–28.Google Scholar $SO\left(2n+1\right)$
and applications
. Ann. Math. (2) 157(2003) no.3, 743–806.10.4007/annals.2003.157.743CrossRefGoogle Scholar
$SO\left(2n+1\right)$
and applications
. Ann. Math. (2) 157(2003) no.3, 743–806.10.4007/annals.2003.157.743CrossRefGoogle Scholar $L$
-functions. In: J. W. Cogdell, H. Kim, and M. Murty (eds.), Lectures on automorphic L-functions, Fields Institute Monograph, 20, American Mathematical Society, Providence, RI (2004), pp. 97–201.Google Scholar
$L$
-functions. In: J. W. Cogdell, H. Kim, and M. Murty (eds.), Lectures on automorphic L-functions, Fields Institute Monograph, 20, American Mathematical Society, Providence, RI (2004), pp. 97–201.Google Scholar $L$
-functions and applications: Progress and prospects, Ohio State University Mathematical Research Institute Publications, 11, de Gruyter, Berlin, 2005, 309–359.Google Scholar
$L$
-functions and applications: Progress and prospects, Ohio State University Mathematical Research Institute Publications, 11, de Gruyter, Berlin, 2005, 309–359.Google Scholar $p$
-adic groups
. Ann. Math. 132(1990), no. 2, 273–330.10.2307/1971524CrossRefGoogle Scholar
$p$
-adic groups
. Ann. Math. 132(1990), no. 2, 273–330.10.2307/1971524CrossRefGoogle Scholar $p$
-adique,
$p$
-adique, 
 $p\ne 2$
. In: S. Gelbart, R. Howe, and P. Sarnak (eds.), Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, 2, Weizmann, Jerusalem, 1990, pp. 267–324. (French).Google Scholar
$p\ne 2$
. In: S. Gelbart, R. Howe, and P. Sarnak (eds.), Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, 2, Weizmann, Jerusalem, 1990, pp. 267–324. (French).Google Scholar $SO(4)$
. Proc. Amer. Math. Soc. 152(2024), 4959–4976.10.1090/proc/16945CrossRefGoogle Scholar
$SO(4)$
. Proc. Amer. Math. Soc. 152(2024), 4959–4976.10.1090/proc/16945CrossRefGoogle Scholar ${Sp}_{2r}$
. Math. Ann. 372(2018), nos. 1–2, 451–488.10.1007/s00208-017-1623-2CrossRefGoogle Scholar
${Sp}_{2r}$
. Math. Ann. 372(2018), nos. 1–2, 451–488.10.1007/s00208-017-1623-2CrossRefGoogle Scholar ${U}_{2r+1}$
. Trans. Amer. Math. Soc. 371(2019), no. 8, 5631–5654.10.1090/tran/7469CrossRefGoogle Scholar
${U}_{2r+1}$
. Trans. Amer. Math. Soc. 371(2019), no. 8, 5631–5654.10.1090/tran/7469CrossRefGoogle Scholar