Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-lv2sk Total loading time: 0.229 Render date: 2022-06-29T18:56:03.629Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians

Published online by Cambridge University Press:  20 November 2018

Nils Bruin
Affiliation:
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6email: nbruin@sfu.cakdoerkse@sfu.ca
Kevin Doerksen
Affiliation:
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6email: nbruin@sfu.cakdoerkse@sfu.ca
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study genus 2 curves whose Jacobians admit a polarized (4, 4)-isogeny to a product of elliptic curves. We consider base fields of characteristic different from 2 and 3, which we do not assume to be algebraically closed. We obtain a full classification of all principally polarized abelian surfaces that can arise from gluing two elliptic curves along their 4-torsion, and we derive the relation their absolute invariants satisfy.

As an intermediate step, we give a general description of Richelot isogenies between Jacobians of genus 2 curves, where previously only Richelot isogenies with kernels that are pointwise defined over the base field were considered.

Our main tool is a Galois theoretic characterization of genus 2 curves admitting multiple Richelot isogenies.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Bolza, O., Ueber die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische durch eine Transformation vierten Grades. Math. Ann. 28(1886), no. 3, 447456.Google Scholar
[2] Bosch, S., Lütkebohmert, W., and Raynaud, M., Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21, Springer-Verlag, Berlin, 1990.CrossRefGoogle Scholar
[3] Bosma, W., Cannon, J., and Playoust, C., The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24(1997), no. 34, 235265. doi:10.1006/jsco.1996.0125Google Scholar
[4] J.-B., Bost and J.-F., Mestre Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2. Gaz. Math. 38(1988), 3664.Google Scholar
[5] Bruin, N. and Doerksen, K., Electronic resources. http://www.cecm.sfu.ca/-nbruin/splitigusa.Google Scholar
[6] Cassels, J. W. S. and Flynn, E. V., Prolegomena to a middlebrow arithmetic of curves of genus 2. London Mathematical Society Lecture Note Series, 230, Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar
[7] Donagi, R. and R. Livné, The arithmetic-geometric mean and isogenies for curves of higher genus. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(1999), no. 2, 323339.Google Scholar
[8] Frey, G., On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2. In: Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 7998.Google Scholar
[9] Frey, G. and Kani, E., Curves of genus 2 covering elliptic curves and an arithmetical application. In: Arithmetic algebraic geometry (Texel, 1989), Progr. Math., 89, Birkhäuser Boston, Boston, MA, 1991, pp. 153176.Google Scholar
[10] Gaudry, P. and Schost, É., On the invariants of the quotients of the Jacobian of a curve of genus 2. In: Applied algebra, algebraic algorithms and error-correcting codes (Melbourne, 2001), Lecture Notes in Comput. Sci., 2227, Springer, Berlin, 2001, pp. 373386.Google Scholar
[11] Igusa, J.-I., Arithmetic variety of moduli for genus two. Ann. of Math. (2) 72(1960), 612649. doi:10.2307/1970233Google Scholar
[12] Igusa, J.-I., On Siegel modular forms of genus two. Amer. J. Math. 84(1962), 175200. doi:10.2307/2372812Google Scholar
[13] Kani, E., Elliptic curves on abelian surfaces. Manuscripta Math. 84(1994), no. 2, 199223. doi:10.1007/BF02567454Google Scholar
[14] Kani, E., Hurwitz spaces of genus 2 covers of an elliptic curve. Collect. Math. 54(2003), no. 1, 151.Google Scholar
[15] L.-C., Kappe and B.Warren, An elementary test for the Galois group of a quartic polynomial. Amer. Math. Monthly 96(1989), no. 2, 133137. doi:10.2307/2323198Google Scholar
[16] Krazer, A., Lehrbuch der Thetafunktionen, Tuebner, 1903, http://hdl.handle.net/2027/miun.acq9458.0001.001.Google Scholar
[17] Kuhn, R. M., Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc. 307(1988), no. 1, 4149.Google Scholar
[18] Magaard, K., Shaska, T., and H. Völklein, Genus 2 curves that admit a degree 5 map to an elliptic curve. Forum Math. 21(2009), no. 3, 547566. doi:10.1515/FORUM.2009.027Google Scholar
[19] Milne, J. S., Abelian varieties. In: Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103150.Google Scholar
[20] Murabayashi, N., The moduli space of curves of genus two covering elliptic curves. Manuscripta Math. 84(1994), no. 2, 125133. doi:10.1007/BF02567449Google Scholar
[21] Shaska, T., Genus 2 curves with (3, 3)-split Jacobian and large automorphism group. In: Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., 2369, Springer, Berlin, 2002, pp. 205218.Google Scholar
[22] Shaska, T., Genus 2 fields with degree 3 elliptic subfields. Forum Math. 16(2004), no. 2, 263280. doi:10.1515/form.2004.013Google Scholar
[23] Silverberg, A., Explicit families of elliptic curves with prescribed mod N representations. In: Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 447461.Google Scholar
[24] Smith, B., Explicit endomorphisms and correspondences. Ph.D. thesis, University of Sydney, 2005, http://hdl.handle.net/2123/1066.Google Scholar
You have Access
7
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Arithmetic of Genus Two Curves with (4,4)-Split Jacobians
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *