Skip to main content Accessibility help

Bakry–Émery Curvature Functions on Graphs

  • David Cushing (a1), Shiping Liu (a2) and Norbert Peyerimhoff (a1)


We study local properties of the Bakry–Émery curvature function ${\mathcal{K}}_{G,x}:(0,\infty ]\rightarrow \mathbb{R}$ at a vertex $x$ of a graph $G$ systematically. Here ${\mathcal{K}}_{G,x}({\mathcal{N}})$ is defined as the optimal curvature lower bound ${\mathcal{K}}$ in the Bakry–Émery curvature-dimension inequality $CD({\mathcal{K}},{\mathcal{N}})$ that $x$ satisfies. We provide upper and lower bounds for the curvature functions, introduce fundamental concepts like curvature sharpness and $S^{1}$ -out regularity, and relate the curvature functions of $G$ with various spectral properties of (weighted) graphs constructed from local structures of $G$ . We prove that the curvature functions of the Cartesian product of two graphs $G_{1},G_{2}$ are equal to an abstract product of curvature functions of $G_{1},G_{2}$ . We explore the curvature functions of Cayley graphs and many particular (families of) examples. We present various conjectures and construct an infinite increasing family of 6-regular graphs which satisfy $CD(0,\infty )$ but are not Cayley graphs.



Hide All

This work was supported by the EPSRC Grant EP/K016687/1 “Topology, Geometry and Laplacians of Simplicial Complexes”.



Hide All
[1] Alon, N. and Roichman, Y., Random Cayley graphs and expanders . Random Structures Algorithms 5(1994), no. 2, 271284.
[2] Bakry, D., Functional inequalities for Markov semigroups. In: Probability measures on groups: recent directions and trends. Tata Inst. Fund. Res., Mumbai, 2006, pp. 91–147.
[3] Bakry, D. and Émery, M., Diffusions hypercontractives . Lecture Notes in Math. 1123, Springer, Berlin, 1985, pp. 177206..
[4] Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., and Yau, S.-T., Li-Yau inequality on graphs . J. Differential Geom. 99(2015), no. 3, 359405.
[5] Brouwer, A. E. and Haemers, W. H., Spectra of graphs . Universitext, Springer, New York, 2012.
[6] Chung, F. R. K., Lin, Y., and Yau, S.-T., Harnack inequalities for graphs with non-negative Ricci curvature . J. Math. Anal. Appl. 415(2014), 2532.
[7] Chung, F. R. K. and Yau, S.-T., Logarithmic Harnack inequalities . Math. Res. Lett. 3(1996), no. 6, 793812.
[8] Cushing, D., Kangaslampi, R., Lipläinen, V., Liu, S., and Stagg, G. W., The graph curvature calculator and the curvatures of cubic graphs. arxiv:1712.03033.
[9] Davis, M. W., The geometry and topology of Coxeter groups . London Mathematical Society Monographs Series, 32. Princeton University Press, Princeton, NJ, 2008.
[10] Friedman, J., Murty, R., and Tillich, J.-P., Spectral estimates for abelian Cayley graphs . J. Combin. Theory Ser. B 96(2006), no. 1, 111121.
[11] Godsil, C. and Royle, G., Algebraic graph theory . Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.
[12] Horn, P., Lin, Y., Liu, Shuang, and Yau, S.-T., Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for nonnegative curvature graphs. J. Reine Angew Math.
[13] Hua, B. and Lin, Y., Stochastic completeness for graphs with curvature dimension conditions . Adv. Math. 306(2017), 279302.
[14] Hua, B. and Lin, Y., Graphs with large girth and nonnegative curvature dimension condition . Comm. Anal. Geom., to appear. arxiv:1608.07000.
[15] Jost, J. and Liu, S., Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on graphs . Discrete Comput. Geom. 51(2014), no. 2, 300322.
[16] Klartag, B., Kozma, G., Ralli, P., and Tetali, P., Discrete curvature and abelian groups . Canad. J. Math. 68(2016), 655674.
[17] Kolesnikov, A. V. and Milman, E., Brascamp–Lieb type inequalities on weighted Riemannian manifolds with boundary . J. Geom. Anal. 27(2017), no. 2, 16801702.
[18] Lakzian, A. and McGuirk, Z., A global Poincaré inequality on graphs via a conical curvature-dimension condition . Anal. Geom. Metr. Spaces 6(2018), 3247. 2018- 0002.
[19] Lin, Y. and Yau, S.-T., Ricci curvature and eigenvalue estimate on locally nite graphs . Math. Res. Lett. 17(2010), no. 2, 343356.
[20] Liu, S., Münch, F., and Peyerimhoff, N., Curvature and higher order Buser inequalities for the graph connection Laplacian . SIAM J. Discrete Math., to appear. arxiv:1512.08134.
[21] Liu, S., Münch, F., and Peyerimhoff, N., Bakry-Émery curvature and diameter bounds on graphs . Calc. Var. Partial Differential Equations 57(2018), 5767. arxiv:1608.07778
[22] Liu, S. and Peyerimhoff, N., Eigenvalue ratios of nonnegatively curved graphs . Combinatorics, Probability and Computing.
[23] Münch, F., Li-Yau inequality on finite graphs via non-linear curvature dimension conditions. arxiv:1412.3340.
[24] Münch, F., Remarks on curvature dimension conditions on graphs . Calc. Var. Partial Differential Equations 56(2017), no. 1. Art. 11, 8 pp.
[25] Ohta, S., (K, N)-convexity and the curvature-dimension condition for negative . N. J. Geom. Anal. 26(2016), no. 3, 20672096.
[26] Qian, Z., Estimates for weighted volumes and applications . Quart. J. Math. Oxford Ser. (2) 48(1997), no. 190, 235242.
[27] Schmuckenschläger, M., Curvature of nonlocal Markov generators. In: Convex geometric analysis. Math. Sci. Res. Inst. Publ., 34. Cambridge Univ. Press, Cambridge, 1999, pp. 189–197.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed