Skip to main content
×
×
Home

The Batalin–Vilkovisky Algebra in the String Topology of Classifying Spaces

  • Katsuhiko Kuribayashi (a1) and Luc Menichi (a2)
Abstract

For almost any compact connected Lie group $G$ and any field $\mathbb{F}_{p}$ , we compute the Batalin–Vilkovisky algebra $H^{\star +\text{dim}\,G}(\text{LBG};\mathbb{F}_{p})$ on the loop cohomology of the classifying space introduced by Chataur and the second author. In particular, if $p$ is odd or $p=0$ , this Batalin–Vilkovisky algebra is isomorphic to the Hochschild cohomology $HH^{\star }(H_{\star }(G),H_{\star }(G))$ . Over $\mathbb{F}_{2}$ , such an isomorphism of Batalin–Vilkovisky algebras does not hold when $G=\text{SO}(3)$ or $G=G_{2}$ . Our elaborate considerations on the signs in string topology of the classifying spaces give rise to a general theorem on graded homological conformal field theory.

Copyright
Footnotes
Hide All

The first author was partially supported by JSPS KAKENHI Grant Number 25287008.

Footnotes
References
Hide All
[1] Behrend, Kai, Ginot, Grégory, Noohi, Behrang, and Xu, Ping, String topology for stacks . Astérisque(2012), no. 343.
[2] Berglund, Alexander and Börjeson, Kaj, Free loop space homology of highly connected manifolds . Forum Math. 29(2017), no. 1, 201228. https://doi.org/10.1515/forum-2015-0074.
[3] Bredon, Glen E., Sheaf theory. Second ed. Graduate Texts in Mathematics, 170. Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0647-7.
[4] Chas, Moira and Sullivan, Dennis, String topology. arxiv:9911159.
[5] Chataur, David and Le Borgne, Jean-François, On the loop homology of complex projective spaces . Bull. Soc. Math. France 139(2011), no. 4, 503518. https://doi.org/10.24033/bsmf.2616.
[6] Chataur, David and Menichi, Luc, String topology of classifying spaces . J. Reine Angew. Math. 669(2012), 145. https://doi.org/10.1515/CRELLE.2011.140.
[7] Earle, Clifford J. and Eells, James, Teichmüller theory for surfaces with boundary . J. Differential Geometry 4(1970), 169185. https://doi.org/10.4310/jdg/1214429381.
[8] Farb, Benson and Margalit, Dan, A primer on mapping class groups. Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012.
[9] Félix, Yves, Halperin, Stephen, and Thomas, Jean-Claude, Rational homotopy theory. Graduate Texts in Mathematics, 205. Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4613-0105-9.
[10] Félix, Yves, Menichi, Luc, and Thomas, Jean-Claude, Gerstenhaber duality in Hochschild cohomology . J. Pure Appl. Algebra 199(2005), no. 1–3, 4359. https://doi.org/10.1016/j.jpaa.2004.11.004.
[11] Félix, Yves and Thomas, Jean-Claude, Rational BV-algebra in string topology . Bull. Soc. Math. France 136(2008), no. 2, 311327. https://doi.org/10.24033/bsmf.2558.
[12] Félix, Yves and Thomas, Jean-Claude, String topology on Gorenstein spaces . Math. Ann. 345(2009), no. 2, 417452. https://doi.org/10.1007/s00208-009-0361-5.
[13] Freed, Daniel S., Hopkins, Michael J., and Teleman, Constantin, Loop groups and twisted K-theory III . Ann. of Math. (2) 174(2011), no. 2, 9471007. https://doi.org/10.4007/annals.2011.174.2.5.
[14] Godin, Véronique, Higher string topology operations. arxiv:0711.4859.
[15] Grodal, Jesper and Lahtinen, Anssi, String topology of finite groups of lie type. http://www.math.ku.dk/∼jg/papers/stringtoplie.pdf, July2017.
[16] Halperin, Stephen, Universal enveloping algebras and loop space homology . J. Pure Appl. Algebra 83(1992), no. 3, 237282. https://doi.org/10.1016/0022-4049(92)90046-I.
[17] Hamstrom, Mary-Elizabeth, Homotopy groups of the space of homeomorphisms on a 2-manifold . Illinois J. Math. 10(1966), 563573.
[18] Hepworth, Richard, String topology for complex projective spaces. 2009. arxiv:0908.1013.
[19] Hepworth, Richard, String topology for Lie groups . J. Topol. 3(2010), no. 2, 424442. https://doi.org/10.1112/jtopol/jtq012.
[20] Hepworth, Richard and Lahtinen, Anssi, On string topology of classifying spaces . Adv. Math. 281(2015), 394507. https://doi.org/10.1016/j.aim.2015.03.022.
[21] Iwase, Norio, Adjoint action of a finite loop space . Proc. Amer. Math. Soc. 125(1997), no. 9, 27532757. https://doi.org/10.1090/S0002-9939-97-03924-5.
[22] Johnson, Dennis L., Homeomorphisms of a surface which act trivially on homology . Proc. Amer. Math. Soc. 75(1979), no. 1, 119125. https://doi.org/10.2307/2042686.
[23] Keller, Bernhard, Deformation quantization after Kontsevich and Tamarkin . In: Déformation, quantification, théorie de Lie. Panor. Synthèses, 20. Soc. Math. France, Paris, 2005, pp. 1962.
[24] Kishimoto, Daisuke and Kono, Akira, On the cohomology of free and twisted loop spaces . J. Pure Appl. Algebra 214(2010), no. 5, 646653. https://doi.org/10.1016/j.jpaa.2009.07.006.
[25] Kock, Joachim, Frobenius algebras and 2D topological quantum field theories. London Mathematical Society Student Texts, 59. Cambridge University Press, Cambridge, 2004.
[26] Kono, Akira and Kuribayashi, Katsuhiko, Module derivations and cohomological splitting of adjoint bundles . Fund. Math. 180(2003), no. 3, 199221. https://doi.org/10.4064/fm180-3-1.
[27] Kupers, Alexander, String topology operations. Master’s thesis, Utrecht University, The Netherlands, 2011.
[28] Kuribayashi, Katsuhiko, Module derivations and the adjoint action of a finite loop space . J. Math. Kyoto Univ. 39(1999), no. 1, 6785. https://doi.org/10.1215/kjm/1250517954.
[29] Kuribayashi, Katsuhiko, Menichi, Luc, and Naito, Takahito, Derived string topology and the Eilenberg-Moore spectral sequence . Israel J. Math. 209(2015), no. 2, 745802. https://doi.org/10.1007/s11856-015-1236-y.
[30] Lahtinen, Anssi, Higher operations in string topology of classifying spaces . Math. Ann. 368(2017), no. 1-2, 163. https://doi.org/10.1007/s00208-016-1406-1.
[31] McCleary, John, A user’s guide to spectral sequences Second ed. Cambridge Studies in Advanced Mathematics, 58, Cambridge University Press, Cambridge, 2001.
[32] Menichi, Luc, The cohomology ring of free loop spaces . Homology Homotopy Appl. 3(2001), no. 1, 193224. https://doi.org/10.4310/HHA.2001.v3.n1.a9.
[33] Menichi, Luc, On the cohomology algebra of a fiber . Algebr. Geom. Topol. 1(2001), 719742. https://doi.org/10.2140/agt.2001.1.719.
[34] Menichi, Luc, String topology for spheres . Comment. Math. Helv. 84(2009), no. 1, 135157. https://doi.org/10.4171/CMH/155.
[35] Menichi, Luc, A Batalin-Vilkovisky algebra morphism from double loop spaces to free loops . Trans. Amer. Math. Soc. 363(2011), no. 8, 44434462. https://doi.org/10.1090/S0002-9947-2011-05374-2.
[36] Milnor, John W. and Moore, John C., On the structure of Hopf algebras . Ann. of Math. (2) 81(1965), 211264. https://doi.org/10.2307/1970615.
[37] Milnor, John W. and Stasheff, James D., Characteristic classes. Annals of Mathematics Studies, 76, Princeton University Press, Princeton, NJ, 1974.
[38] Mimura, Mamoru and Toda, Hirosi, Topology of Lie groups. I, II. Translations of Mathematical Monographs, 91. American Mathematical Society, Providence, RI, 1991.
[39] Spanier, Edwin H., Algebraic topology. Springer-Verlag, New York, 1981.
[40] Stasheff, James and Halperin, Steve, Differential algebra in its own rite . In: Proceedings of the Advanced Study Institute on Algebraic Topology, vol. 3. Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 567577.
[41] Tamanoi, Hirotaka, Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds . Int. Math. Res. Not. (2006), 123. https://doi.org/10.1155/IMRN/2006/97193.
[42] Tamanoi, Hirotaka, Cap products in string topology . Algebr. Geom. Topol. 9(2009), no. 2, 12011224. https://doi.org/10.2140/agt.2009.9.1201.
[43] Tamanoi, Hirotaka, Stable string operations are trivial . Int. Math. Res. Not. IMRN (2009), no. 24, 46424685. https://doi.org/10.1093/imrn/rnp104.
[44] Tamanoi, Hirotaka, Loop coproducts in string topology and triviality of higher genus TQFT operations . J. Pure Appl. Algebra 214(2010), no. 5, 605615. https://doi.org/10.1016/j.jpaa.2009.07.011.
[45] Tezuka, Michishige, On the cohomology of finite chevalley groups and free loop spaces of classifying spaces. Suurikenkoukyuuroku, 1057:54–55, 1998. http://hdl.handle.net/2433/62316.
[46] Wahl, Nathalie, Ribbon braids and related operads. Ph.D. thesis, Oxford University, 2001. http://www.math.ku.dk/∼wahl/.
[47] Westerland, Craig, String homology of spheres and projective spaces . Algebr. Geom. Topol. 7(2007), 309325. https://doi.org/10.2140/agt.2007.7.309.
[48] Yang, Tian, A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials . Topology Appl. 160(2013), no. 13, 16331651. https://doi.org/10.1016/j.topol.2013.06.010.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed