 $C(\Omega)$ to a
$C(\Omega)$ to a  $C^*$-algebra
$C^*$-algebraPublished online by Cambridge University Press: 21 April 2025
Let  $\Omega $ be a compact subset of
$\Omega $ be a compact subset of  $\mathbb {C}$ and let A be a unital simple, separable
$\mathbb {C}$ and let A be a unital simple, separable  $C^*$-algebra with stable rank one, real rank zero, and strict comparison. We show that, given a Cu-morphism
$C^*$-algebra with stable rank one, real rank zero, and strict comparison. We show that, given a Cu-morphism  ${\alpha :\mathrm { Cu}(C(\Omega ))\to \mathrm {Cu}(A)}$ with
${\alpha :\mathrm { Cu}(C(\Omega ))\to \mathrm {Cu}(A)}$ with  , there exists a homomorphism
, there exists a homomorphism  $\phi : C(\Omega )\to A$ such that
$\phi : C(\Omega )\to A$ such that  $\mathrm {Cu}(\phi )=\alpha $. Moreover, if
$\mathrm {Cu}(\phi )=\alpha $. Moreover, if  $K_1(A)$ is trivial, then
$K_1(A)$ is trivial, then  $\phi $ is unique up to approximate unitary equivalence. We also give classification results for maps from a large class of
$\phi $ is unique up to approximate unitary equivalence. We also give classification results for maps from a large class of  $C^*$-algebras to A in terms of the Cuntz semigroup.
$C^*$-algebras to A in terms of the Cuntz semigroup.
The research of the first author was supported by NNSF of China (Grant No.: 12101113). The research of the second author was supported by NSERC of Canada. The third author was supported by LiaoNing Revitalization Talents Program (No.: XLYC2403058) and NNSF of China (Grant No.: 12101102).
 ${C}^{\ast }$
-algebras: the Hausdorff case
. J. Funct. Anal. 207(2004), 461–513.10.1016/j.jfa.2003.06.008CrossRefGoogle Scholar
${C}^{\ast }$
-algebras: the Hausdorff case
. J. Funct. Anal. 207(2004), 461–513.10.1016/j.jfa.2003.06.008CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. J. Funct. Anal. 45(1982), no. 3, 297–340.10.1016/0022-1236(82)90009-XCrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. J. Funct. Anal. 45(1982), no. 3, 297–340.10.1016/0022-1236(82)90009-XCrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. Pacific J. Math. 71(1977), no. 2, 335–348.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. Pacific J. Math. 71(1977), no. 2, 335–348.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. J. Reine Angew. Math. 621(2008), 191–211.Google Scholar
${C}^{\ast }$
-algebras
. J. Reine Angew. Math. 621(2008), 191–211.Google Scholar ${C}^{\ast }$
-algebras. Int. Math. Res. Not. IMRN (2025), no. 7, rnaf068.Google Scholar
${C}^{\ast }$
-algebras. Int. Math. Res. Not. IMRN (2025), no. 7, rnaf068.Google Scholar ${C}^{\ast }$
-algebras of stable rank one
. Int. Math. Res. Not. IMRN 158(2008), no. 5, Art. ID rnm158, 33pp.Google Scholar
${C}^{\ast }$
-algebras of stable rank one
. Int. Math. Res. Not. IMRN 158(2008), no. 5, Art. ID rnm158, 33pp.Google Scholar ${C}^{\ast }$
-algebras with one-dimensional spectrum
. Int. Math. Res. Not. IMRN (2011), no. 11, 2577–2615.Google Scholar
${C}^{\ast }$
-algebras with one-dimensional spectrum
. Int. Math. Res. Not. IMRN (2011), no. 11, 2577–2615.Google Scholar ${C}^{\ast }$
-algebras
. J. Reine Angew. Math. 623(2008), 161–193.Google Scholar
${C}^{\ast }$
-algebras
. J. Reine Angew. Math. 623(2008), 161–193.Google Scholar ${C}^{\ast }$
-algebras
. Math. Ann. 233(1978), no. 2, 145–153.10.1007/BF01421922CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. Math. Ann. 233(1978), no. 2, 145–153.10.1007/BF01421922CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. J. Funct. Anal. 259(2010), 1209–1229.10.1016/j.jfa.2010.03.022CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. J. Funct. Anal. 259(2010), 1209–1229.10.1016/j.jfa.2010.03.022CrossRefGoogle Scholar ${C}^{\ast }$
-algebras of stable rank one
. C. R. Math. Acad. Sci. Soc. R. Can. 29(2007), 48–51.Google Scholar
${C}^{\ast }$
-algebras of stable rank one
. C. R. Math. Acad. Sci. Soc. R. Can. 29(2007), 48–51.Google Scholar ${C}^{\ast }$
-algebras with stable rank one and real rank zero
. J. Oper. Theory 86(2021), no. 2, 299–316.10.7900/jot.2020apr21.2306CrossRefGoogle Scholar
${C}^{\ast }$
-algebras with stable rank one and real rank zero
. J. Oper. Theory 86(2021), no. 2, 299–316.10.7900/jot.2020apr21.2306CrossRefGoogle Scholar ${C}^{\ast }$
-algebra
. Amer. J. Math. 133(2011), no. 4, 969–1005.10.1353/ajm.2011.0027CrossRefGoogle Scholar
${C}^{\ast }$
-algebra
. Amer. J. Math. 133(2011), no. 4, 969–1005.10.1353/ajm.2011.0027CrossRefGoogle Scholar ${C}^{\ast }$
-algebras. Preprint. arXiv:2212.02290v2.Google Scholar
${C}^{\ast }$
-algebras. Preprint. arXiv:2212.02290v2.Google Scholar ${C}^{\ast }$
-algebras are traces
. C. R. Math. Acad. Sci. Soc. R. Can. 36(2014), nos. 2–3, 67–92.Google Scholar
${C}^{\ast }$
-algebras are traces
. C. R. Math. Acad. Sci. Soc. R. Can. 36(2014), nos. 2–3, 67–92.Google Scholar ${C}^{\ast }$
-algebras of real rank zero
. J. Funct. Anal. 269(2015), 903–907.10.1016/j.jfa.2015.02.006CrossRefGoogle Scholar
${C}^{\ast }$
-algebras of real rank zero
. J. Funct. Anal. 269(2015), 903–907.10.1016/j.jfa.2015.02.006CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. J. Funct. Anal. 269(2015), 3304–3315.10.1016/j.jfa.2015.08.019CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. J. Funct. Anal. 269(2015), 3304–3315.10.1016/j.jfa.2015.08.019CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. J. Funct. Anal. 281(2021), no. 5, Paper No. 109068. 30 pp.10.1016/j.jfa.2021.109068CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. J. Funct. Anal. 281(2021), no. 5, Paper No. 109068. 30 pp.10.1016/j.jfa.2021.109068CrossRefGoogle Scholar ${C}^{\ast }$
-algebras
. J. Funct. Anal. 266(2014), no. 4, 1883–1912.10.1016/j.jfa.2013.12.009CrossRefGoogle Scholar
${C}^{\ast }$
-algebras
. J. Funct. Anal. 266(2014), no. 4, 1883–1912.10.1016/j.jfa.2013.12.009CrossRefGoogle Scholar ${C}^{\ast }$
-homomorphisms from
${C}^{\ast }$
-homomorphisms from 
 ${C}_0\left(0,1\right]$
to a
${C}_0\left(0,1\right]$
to a 
 ${C}^{\ast }$
-algebra. J. Funct. Anal. 258(2010), no. 3, 869–892.10.1016/j.jfa.2009.06.025CrossRefGoogle Scholar
${C}^{\ast }$
-algebra. J. Funct. Anal. 258(2010), no. 3, 869–892.10.1016/j.jfa.2009.06.025CrossRefGoogle Scholar ${C}^{\ast }$
-algebras tensored with a UHF-algebra, II
. J. Funct. Anal. 107(1992), 255–269.10.1016/0022-1236(92)90106-SCrossRefGoogle Scholar
${C}^{\ast }$
-algebras tensored with a UHF-algebra, II
. J. Funct. Anal. 107(1992), 255–269.10.1016/0022-1236(92)90106-SCrossRefGoogle Scholar ${C}^{\ast }$
-algebras, London Mathematical Society Student Texts, 49, Cambridge University Press, Cambridge, 2000. xii+242 pp.Google Scholar
${C}^{\ast }$
-algebras, London Mathematical Society Student Texts, 49, Cambridge University Press, Cambridge, 2000. xii+242 pp.Google Scholar