Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T12:29:27.442Z Has data issue: false hasContentIssue false

Completeness of Infinite-dimensional Lie Groups in Their Left Uniformity

Published online by Cambridge University Press:  07 January 2019

Helge Glöckner*
Affiliation:
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany e-mail: glockner@math.uni-paderborn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove completeness for the main examples of infinite-dimensional Lie groups and some related topological groups. Consider a sequence $G_{1}\subseteq G_{2}\subseteq \cdots \,$ of topological groups $G_{n}$ n such that $G_{n}$ is a subgroup of $G_{n+1}$ and the latter induces the given topology on $G_{n}$, for each $n\in \mathbb{N}$. Let $G$ be the direct limit of the sequence in the category of topological groups. We show that $G$ induces the given topology on each $G_{n}$ whenever $\cup _{n\in \mathbb{N}}V_{1}V_{2}\cdots V_{n}$ is an identity neighbourhood in $G$ for all identity neighbourhoods $V_{n}\subseteq G_{n}$. If, moreover, each $G_{n}$ is complete, then $G$ is complete. We also show that the weak direct product $\oplus _{j\in J}G_{j}$ is complete for each family $(G_{j})_{j\in J}$ of complete Lie groups $G_{j}$. As a consequence, every strict direct limit $G=\cup _{n\in \mathbb{N}}G_{n}$ of finite-dimensional Lie groups is complete, as well as the diffeomorphism group $\text{Diff}_{c}(M)$ of a paracompact finite-dimensional smooth manifold $M$ and the test function group $C_{c}^{k}(M,H)$, for each $k\in \mathbb{N}_{0}\cup \{\infty \}$ and complete Lie group $H$ modelled on a complete locally convex space.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© Canadian Mathematical Society 2018

References

Albeverio, S., Høegh-Krohn, R., Marion, J. A., Testard, D. H., and Torrésani, B. S., Noncommutative distributions: unitary representation of gauge groups and algebras. Marcel Dekker, New York, 1993.CrossRefGoogle Scholar
Arhangel’skii, A. and Tkachenko, M., Topological groups and related structures. World Scientific, Paris, 2008.CrossRefGoogle Scholar
Banakh, T., Mine, K., Repovš, D., Sakai, K., and Yagasaki, T., Detecting topological groups which are (locally) homeomorphic to LF-spaces . Topology Appl. 160(2013), 22722284. https://doi.org/10.1016/j.topol.2013.07.023.CrossRefGoogle Scholar
Banakh, T. and Repovš, D., Topological structure of direct limits in the category of uniform spaces . Topology Appl. 157(2010), 10911100. https://doi.org/10.1016/j.topol.2010.01.010.CrossRefGoogle Scholar
Banakh, T. and Yagasaki, Y., Diffeomorphism groups of non-compact manifolds endowed with the Whitney C -topology . Topology Appl. 179(2015), 5161. https://doi.org/10.1016/j.topol.2014.08.015.CrossRefGoogle Scholar
Banyaga, A., The structure of classical diffeomorphism groups. Kluwer Academic Publishers, Dordrecht, 1997.CrossRefGoogle Scholar
Bastiani, A., Applications différentiables et variétés différentiables de dimension infinie . J. Anal. Math. 13(1964), 1114. https://doi.org/10.1007/BF02786619.CrossRefGoogle Scholar
Bertram, W., Glöckner, H., and Neeb, K.-H., Differential calculus over general base fields and rings . Expo. Math. 22(2004), 213282. https://doi.org/10.1016/S0723-0869(04)80006-9.CrossRefGoogle Scholar
Bourbaki, N., Topological vector spaces. Chapters 1–5, Springer, Berlin, 1987.CrossRefGoogle Scholar
Bourbaki, N., Lie Groups and Lie algebras. Chapters 1–3, Springer, Berlin, 1989.Google Scholar
Cabau, P. and Pelletier, F., Integrability on direct limit Banach manifolds. arxiv:1408.3715v2.Google Scholar
Dahmen, R., Analytic mappings between LB-spaces and applications in infinite-dimensional Lie theory . Math. Z. 266(2010), 115140. https://doi.org/10.1007/s00209-009-0557-0.CrossRefGoogle Scholar
Dahmen, R., Regularity in Milnor’s sense for ascending unions of Banach–Lie groups . J. Lie Theory 24(2014), 545560.Google Scholar
Dierolf, S. and Wengenroth, J., Inductive limits of topological algebras . In: Linear Topological Spaces and Complex Analysis III. Scientific and Technical Research Council of Turkey (TÜBİTAK), Ankata, 1997, pp. 4549.Google Scholar
Dieudonné, J., Sur la completion des groupes topologiques . C. R. Acad. Sci. Paris 218(1944), 774776.Google Scholar
Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions . In: Geometry and analysis on finite- and infinite-dimensional Lie groups, Banach Center Publications 55. Warsaw, 2002, pp. 4359.Google Scholar
Glöckner, H., Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups . J. Funct. Anal. 94(2002), 347409.CrossRefGoogle Scholar
Glöckner, H., Lie groups of measurable mappings . Canadian J. Math. 55(2003), 969999. https://doi.org/10.4153/CJM-2003-039-9.CrossRefGoogle Scholar
Glöckner, H., Fundamentals of direct limit Lie theory . Compositio Math. 141(2005), 15511577. https://doi.org/10.1112/S0010437X05001491.CrossRefGoogle Scholar
Glöckner, H., Implicit functions from topological vector spaces to Banach spaces . Israel J. Math. 155(2006), 205252. https://doi.org/10.1007/BF02773955.CrossRefGoogle Scholar
Glöckner, H., Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories . J. Funct. Anal. 245(2007), 1961. https://doi.org/10.1016/j.jfa.2006.12.018.CrossRefGoogle Scholar
Glöckner, H., Completeness of locally k 𝜔 -groups and related infinite-dimensional Lie groups . Topol. Appl. 228(2017), 277284. https://doi.org/10.1016/j.topol.2017.05.007.CrossRefGoogle Scholar
Glöckner, H., Lie groups over non-discrete topological fields. arxiv:math/0408008.Google Scholar
Hamilton, R. S., The inverse function theorem of Nash and Moser . Bull. Amer. Math. Soc. 7(1982), 65222. https://doi.org/10.1090/S0273-0979-1982-15004-2.CrossRefGoogle Scholar
Hewitt, E. and Ross, K. A., Abstract harmonic analysis, Vol. 1. Grundlehren der Mathematischen Wissenschaften, 115. Springer-Verlag, Berlin, 1979.CrossRefGoogle Scholar
Hirai, T., Shimomura, H., Tatsuuma, N., and Hirai, E., Inductive limits of topologies, their direct products, and problems related to algebraic structures . J. Math. Kyoto Univ. 41(2001), 475505. https://doi.org/10.1215/kjm/1250517614.Google Scholar
Hirsch, M. W., Differential topology. Springer, New York, 1976.CrossRefGoogle Scholar
Hjelle, E. O. and Schmeding, A., Strong topologies for spaces of smooth maps with infinite-dimensional target . Expo. Math. 35(2017), 1353. https://doi.org/10.1016/j.exmath.2016.07.004.CrossRefGoogle Scholar
Hunt, D. C. and Morris, S. A., Free subgroups of free topological groups, Lect. Notes Math., 372. Springer, Berlin, 1974, pp. 377387.Google Scholar
Illman, S., The very-strong C -topology on C (M, N) and K-equivariant maps . Osaka J. Math. 40(2003), 409428.Google Scholar
Kelley, J. L., General topology. Springer, New York, 1975.Google Scholar
Kriegl, A. and Michor, P. W., The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
Michor, P. W., Manifolds of differentiable mappings. Shiva Publications, Nantwich, 1980.Google Scholar
Milnor, J., Remarks on infinite-dimensional Lie groups . In: Relativity, groups and topology, II. North-Holland, Amsterdam, 1984, pp. 10071057.Google Scholar
Natarajan, L., Rodríguez-Carrington, E., and Wolf, J. A., Differentiable structure for direct limit groups . Lett. Math. Phys. 23(1991), 99109. https://doi.org/10.1007/BF00703721.CrossRefGoogle Scholar
Neeb, K.-H., Towards a Lie theory of locally convex groups . Jpn. J. Math. 1(2006), 291468. https://doi.org/10.1007/s11537-006-0606-y.CrossRefGoogle Scholar
Neeb, K.-H. and Wagemann, F., Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds . Geom. Dedicata 134(2008), 1760. https://doi.org/10.1007/s10711-008-9244-2.CrossRefGoogle Scholar
Omori, H., Infinited-dimensional Lie groups, Translations of Mathematical Monographs, 158. American Mathematical Society, Providence, RI, 1997.Google Scholar
Pressley, A. and Segal, G., Loop groups . Clarendon Press, Oxford, 1986.Google Scholar
Roelcke, W. and Dierolf, S., Uniform structures on topological groups and their quotients. McGraw-Hill, New York, 1981.Google Scholar
Schütt, J., Symmetry groups of principal bundles over non-compact bases. arxiv:1310.8538.Google Scholar
Tatsuuma, N., Shimomura, H., and Hirai, T., On group topologies and unitary representations of inductive limits of topological groups and the case of the group of diffeomorphisms . J. Math. Kyoto Univ. 38(1998), 551578. https://doi.org/10.1215/kjm/1250518067.Google Scholar
Waelbroeck, L., Topological vector spaces and algebras. Springer, Berlin, 1971.Google Scholar
Wells, J. C., Invariant manifolds of nonlinear operators . Pacific J. Math. 62(1976), 285293. https://doi.org/10.2140/pjm.1976.62.285.CrossRefGoogle Scholar
Wockel, C., Lie group structures on symmetry groups of principal bundles . J. Funct. Anal. 251(2007), 254288. https://doi.org/10.1016/j.jfa.2007.05.016.CrossRefGoogle Scholar
Yamasaki, A., Inductive limit of general linear groups . J. Math. Kyoto Univ. 38(1998), 769779. https://doi.org/10.1215/kjm/1250518008.Google Scholar