Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-vgwqb Total loading time: 0.279 Render date: 2021-04-11T15:59:39.731Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path

Published online by Cambridge University Press:  20 November 2018

J. Haglund
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA email: jhaglund@math.upenn.edu
J. Morse
Affiliation:
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA email: morsej@math.drexel.edu
M. Zabrocki
Affiliation:
Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 email: zabrocki@mathstat.yorku.ca
Rights & Permissions[Opens in a new window]

Abstract

We introduce a $q,\,t$ -enumeration of Dyck paths that are forced to touch the main diagonal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of the Macdonald theory $\nabla $ operator applied to a Hall–Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the “shuffle conjecture” (Duke J. Math. 126 (2005), pp. 195 − 232) for $\nabla {{e}_{n}}\left[ X \right]$ . We bring to light that certain generalized Hall–Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of $q,\,t$ -Catalan sequences, and we prove a number of identities involving these functions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Bergeron, N., Descouens, F., and Zabrocki, M., A filtration of (q, t)-Catalan numbers. Adv. in Appl. Math. 44(2010), no. 1, 1636. http://dx.doi.org/10.1016/j.aam.2009.03.002 Google Scholar
[2] Bergeron, F., Garsia, A. M., Haiman, M., and Tesler, G., Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Methods Appl. Anal. 6(1999), no. 3, 363420.Google Scholar
[3] Garsia, A. M. and Haglund, J., A positivity result in the theory of Macdonald polynomials. Proc. Natl. Acad. Sci. USA 98(2001), no. 8, 43134316. http://dx.doi.org/10.1073/pnas.071043398 Google Scholar
[4] Garsia, A. M. and Haglund, J., A proof of the q, t-Catalan positivity conjecture. La CIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC). Discrete Math. 256(2002), no. 3, 677717. http://dx.doi.org/10.1016/S0012-365X(02)00343-6 Google Scholar
[5] Garsia, A. M., Xin, G., and Zabrocki, M., Hall-Littlewood operators in the theory of parking functions and diagonal harmonics. Int. Math. Res. Notices (2011), published online April 29, 2011. http://dx.doi.org/10.1093/imrn/rnr060 CrossRefGoogle Scholar
[6] Haglund, J., Conjectured statistics for the q, t-Catalan numbers. Adv. Math. 175(2003), no. 2, 319334. http://dx.doi.org/10.1016/S0001-8708(02)00061-0 Google Scholar
[7] Haglund, J., A proof of the q, t-Schröder conjecture. Int. Math. Res. Notices 11(2004), no. 11, 525560.Google Scholar
[8] Haglund, J., The q, t-Catalan numbers and the space of diagonal harmonics. University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008.Google Scholar
[9] Haglund, J., Haiman, M., Loehr, N., Remmel, J. B., and Ulyanov, A., A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126(2005), no. 2, 195232. http://dx.doi.org/10.1215/S0012-7094-04-12621-1 Google Scholar
[10] Haiman, M., Hilbert schemes, polygraphs, and the Macdonald positivity conjecture. J. Amer. Math. Soc. 14(2001), no. 4, 9411006. http://dx.doi.org/10.1090/S0894-0347-01-00373-3 Google Scholar
[11] Haiman, M., Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149(2002), no. 2, 371407. http://dx.doi.org/10.1007/s002220200219 Google Scholar
[12] Jing, N. H., Vertex operators and Hall-Littlewood symmetric functions. Adv. Math. 87(1991), no. 2, 226248. http://dx.doi.org/10.1016/0001-8708(91)90072-F Google Scholar
[13] Lam, T., Schubert polynomials for the affine Grassmannian. J. Amer. Math Soc 21(2008), no. 1, 259281.Google Scholar
[14] Lapointe, L., Lascoux, A., and Morse, J., Tableau atoms and a new Macdonald positivity conjecture. Duke Math. J. 116(2003), no. 1, 103146. http://dx.doi.org/10.1215/S0012-7094-03-11614-2 Google Scholar
[15] Lapointe, L. and Morse, J., Schur function analogs for a filtration of the symmetric function space. J. Combin. Theory Ser. A 101(2003), no. 2, 191224. http://dx.doi.org/10.1016/S0097-3165(02)00012-2 Google Scholar
[16] Lapointe, L. and Morse, J., A k-tableaux characterization of k-Schur functions. Adv Math 213(2007), no. 1, 183204. http://dx.doi.org/10.1016/j.aim.2006.12.005 Google Scholar
[17] Lapointe, L. and Morse, J., Quantum cohomology and the k-Schur basis. Trans. Amer. Math. Soc. 360(2008), no. 4, 20212040. http://dx.doi.org/10.1090/S0002-9947-07-04287-0 Google Scholar
[18] Loehr, N. and G. S.Warrington, Nested quantum Dyck paths and r(s_). Int. Math. Res. Not. IMRN 2008, no. 5, Art. ID rnm 157, 29 pp.Google Scholar
[19] Macdonald, I. G., Symmetric functions and Hall polynomials. Second ed. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 66 *
View data table for this chart

* Views captured on Cambridge Core between 20th November 2018 - 11th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *