Hostname: page-component-7dd5485656-tbj44 Total loading time: 0 Render date: 2025-10-31T22:08:51.819Z Has data issue: false hasContentIssue false

The cyclic and modular microcosm principle in quantum topology

Published online by Cambridge University Press:  21 July 2025

Lukas Woike*
Affiliation:
Université Bourgogne Europe, CNRS, IMB UMR 5584, F-21000 Dijon, France

Abstract

Monoidal categories with additional structure such as a braiding or some form of dualityabound in quantum topology. They often appear in tandem with Frobenius algebras inside them. Motivations for this range from the theory of module categories to the construction of correlators in conformal field theory. We gen eralize the Baez–Dolan microcosm principle to consistently describe all these types of algebras by extending it to cyclic and modular algebras in the sense of Getzler–Kapranov. Our main result links the microcosm principle for cyclic algebras to the one for modular algebras via Costello’s modular envelope. The result can be understood as a local-to-global construction or an integration procedure for various flavors of Frobenius algebras that substantially generalizes and unifies the available (and often intrinsically semisimple) methods using for example triangulations or classical skein theory. As the main application of this rather abstract result, we solve the problem of classifying consistent systems of correlators for open conformal field theories and show that the genus zero correlators for logarithmic conformal field theories constructed by Fuchs–Schweigert can be uniquely extended to handlebodies. This establishes a very general correspondence between full genus zero conformal field theory in dimension two and skein theory in dimension three.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

L.W. gratefully acknowledges support by the ANR project CPJ n°ANR-22-CPJ1-0001-01 at the Institut de Mathématiques de Bourgogne (IMB). The IMB receives support from the EIPHI Graduate School (contract ANR-17-EURE-0002).

References

Andersen, J. E. and Fjelstad, J., Reducibility of quantum representations of mapping class groups . Lett. Math. Phys. 91(2010), 215239.10.1007/s11005-009-0367-7CrossRefGoogle Scholar
Allen, R., Lentner, S., Schweigert, C., and Wood, S., Duality structures for module categories of vertex operator algebras and the Feigin Fuchs boson . Selecta Math. New Ser. 31(2025), no. 36.CrossRefGoogle Scholar
Barr, M., $\star$ -Autonomous categories, volume 572 of Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York, 1979.Google Scholar
Baez, J. and Dolan, J., Higher-dimensional algebra and topological quantum field theory . J. Math. Phys. 36(1995), no. 11, 60736105.10.1063/1.531236CrossRefGoogle Scholar
Baez, J. and Dolan, J., Higher-dimensional algebra III: n-Categories and the algebra of opetopes . Adv. Math. 135(1998), 145206.10.1006/aima.1997.1695CrossRefGoogle Scholar
Boyarchenko, M. and Drinfeld, V., A duality formalism in the spirit of Grothendieck and Verdier . Quantum Topol. 4(2013), no. 4, 447489.10.4171/qt/45CrossRefGoogle Scholar
Brown, J. and Haïoun, B., Skein categories in non-semisimple settings. Preprint, 2024. arXiv:2406.08956 [math.QA]Google Scholar
Bakalov, B. and Kirillov, A., Lectures on tensor categories and modular functors, volume 21 of University Lecture Series, American Mathematical Society, Providence, 2001.Google Scholar
Boardman, J. M. and Vogt, R. M., Homotopy-everything $H$ -spaces. Bull. Amer. Math. Soc. 74(1968), 11171122.10.1090/S0002-9904-1968-12070-1CrossRefGoogle Scholar
Boardman, J. M. and Vogt, R. M., Homotopy invariant algebraic structures on topological spaces, volume 347 of Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York, 1973.10.1007/BFb0068547CrossRefGoogle Scholar
Brochier, A. and Woike, L., A classification of modular functors via factorization homology. Preprint, 2022. arXiv:2212.11259 [math.QA]Google Scholar
Costantino, F., Geer, N., and Patureau-Mirand, B., Admissible skein modules. Preprint, 2023. arXiv:2302.04493 [math.GT]Google Scholar
Costello, K., The A-infinity operad and the moduli space of curves. Preprint, 2004. arXiv:math/0402015 [math.AG]Google Scholar
Costello, K., A dual version of the ribbon graph decomposition of moduli space . Geom. Topol. 11(2007), no. 3, 16371652.10.2140/gt.2007.11.1637CrossRefGoogle Scholar
Costello, K., Topological conformal field theories and Calabi-Yau categories . Adv. Math. 210(2007), 165214.CrossRefGoogle Scholar
Cockett, J. R. B. and Seely, R. A. G., Weakly distributive categories. J. Pure Appl. Algebra 114(1997), 133173.CrossRefGoogle Scholar
Davydov, A., Müger, M., Nikshych, D., and Ostrik, V., The Witt group of non-degenerate braided fusion categories . J. Reine Angew. Math. 677(2013), 135177.Google Scholar
De Renzi, M., Gainutdinov, A. M., Geer, N., Patureau-Mirand, B., and Runkel, I., Mapping class group representations from non-semisimple TQFTs . Commun. Contemp. Math. 25(2023), no. 01, 2150091.10.1142/S0219199721500917CrossRefGoogle Scholar
Egger, J. M., The Frobenius relations meet linear distributivity . Theory Appl. Categ. 24(2010), 2538.Google Scholar
Etingof, P., Gelaki, S., Nikshych, D., and Ostrik, V., Tensor categories, volume 205 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2015.10.1090/surv/205CrossRefGoogle Scholar
Etingof, P., Nikshych, D., and Ostrik, V., An analogue of Radford’s ${S}^4$ formula for finite tensor categories . Int. Math. Res. Not 54(2004), 29152933.10.1155/S1073792804141445CrossRefGoogle Scholar
Etingof, P. and Ostrik, V., Finite tensor categories . Mosc. Math. J. 4(2004), no. 3, 627654.10.17323/1609-4514-2004-4-3-627-654CrossRefGoogle Scholar
Egas Santander, D. and Kuper, S., Comparing combinatorial models of moduli space and their compactifications . Algebr. Geom. Topol. 24(2024), no. 2, 595654.10.2140/agt.2024.24.595CrossRefGoogle Scholar
Fjelstad, J., Fuchs, J., Runkel, I., and Schweigert, C., TFT construction of RCFT correlators V: Proof of modular invariance and factorisation . Theor. App. Categ. 16(2006), 342433.Google Scholar
Fröhlich, J., Fuchs, J., Runkel, I., and Schweigert, C., Correspondences of ribbon categories . Adv. Math. 199(2006), 192329.10.1016/j.aim.2005.04.007CrossRefGoogle Scholar
Fjelstad, J., Fuchs, J., Runkel, I., and Schweigert, C., Uniqueness of open/closed rational CFT with given algebra of open states . Adv. Theor. Math. Phys. 12(2008), 12831375.10.4310/ATMP.2008.v12.n6.a4CrossRefGoogle Scholar
Fuchs, J., Gannon, T., Schaumann, G., and Schweigert, C., The logarithmic Cardy case: Boundary states and annuli . Nucl. Phys. B 930(2018), 287327.10.1016/j.nuclphysb.2018.03.005CrossRefGoogle Scholar
Farb, B. and Margalit, D., A primer on mapping class groups, volume 49 of Princeton Mathematical Series, Princeton University Press, Princeton, 2012.Google Scholar
Fresse, B., Homotopy of operads and Grothendieck-Teichmüller groups. Part 1: The algebraic theory and its topological background, volume 217 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2017.Google Scholar
Fuchs, J., Runkel, I., and Schweigert, C., TFT construction of RCFT correlators. I: Partition functions . Nucl. Phys. B 646(2002), 353497.10.1016/S0550-3213(02)00744-7CrossRefGoogle Scholar
Fuchs, J., Runkel, I., and Schweigert, C., TFT construction of RCFT correlators. II: Unoriented world sheets . Nucl. Phys. B 678(2004), 511637.10.1016/j.nuclphysb.2003.11.026CrossRefGoogle Scholar
Fuchs, J., Runkel, I., and Schweigert, C., TFT construction of RCFT correlators. III: Simple currents . Nucl. Phys. B 694(2004), 277353.Google Scholar
Fuchs, J., Runkel, I., and Schweigert, C., TFT construction of RCFT correlators. IV: Structure constants and correlation functions . Nucl. Phys. B 715(2005), 539638.10.1016/j.nuclphysb.2005.03.018CrossRefGoogle Scholar
Fuchs, J., Runkel, I., and Schweigert, C., Twenty-five years of two-dimensional rational conformal field theory . J. Math. Phys. 51(2010), 15210.10.1063/1.3277118CrossRefGoogle Scholar
Fuchs, J. and Stigner, C., On Frobenius algebras in rigid monoidal categories . Arab. J. Sci. Eng. 33(2008), no. 2C, 175191.Google Scholar
Fuchs, J. and Schweigert, C., Consistent systems of correlators in non-semisimple conformal field theory . Adv. Math. 307(2017), 598639.10.1016/j.aim.2016.11.020CrossRefGoogle Scholar
Fuchs, J. and Schweigert, C., Full logarithmic conformal field theory—An attempt at a status report. In: Jurčo, B., Sämann, C., Schreiber, U., and Wolf, M. (eds.), Fortschritte der Physik. Vol. 67, Wiley-VCH, Berlin, 2019, article id 201910018 Google Scholar
Fuchs, J. and Schweigert, C., Bulk from boundary in finite CFT by means of pivotal module categories . Nucl. Phys. B 967(2021), 115392.10.1016/j.nuclphysb.2021.115392CrossRefGoogle Scholar
Fuchs, J. and Schweigert, C., Internal natural transformations and Frobenius algebras in the Drinfeld center . Transf. Groups 28(2023), 733768.10.1007/s00031-021-09678-5CrossRefGoogle Scholar
Fuchs, J., Schweigert, C., and Stigner, C., From non-semisimple Hopf algebras to correlation functions for logarithmic CFT . J. Phys. A 46(2013), 494008. 1–40.10.1088/1751-8113/46/49/494008CrossRefGoogle Scholar
Fuchs, J., Schaumann, G., and Schweigert, C., Eilenberg-Watts calculus for finite categories and a bimodule Radford ${S}^4$ theorem. Trans. Amer. Math. Soc. 373(2020), 140.10.1090/tran/7838CrossRefGoogle Scholar
Fuchs, J., Schaumann, G., Schweigert, C., and Wood, S., Grothendieck-Verdier module categories, Frobenius algebras and relative Serre functors. Preprint, 2024. arXiv:2405.20811 [math.CT]10.1016/j.aim.2025.110325CrossRefGoogle Scholar
Fuchs, J., Schweigert, C., Wood, S., and Yang, Y., Algebraic structures in two-dimensional conformal field theory . In: Szabo, R. and Bojowald, M. (eds.), Encyclopedia of mathematical physics. 2nd ed., Elsevier, 2025, pp. 604617.10.1016/B978-0-323-95703-8.00013-6CrossRefGoogle Scholar
Fuchs, J., Schweigert, C., and Yang, Y., String-net construction of RCFT correlators, Volume 45 of Springer Briefs in Mathematical Physics. Springer, 2022.10.1007/978-3-031-14682-4CrossRefGoogle Scholar
Freed, D. and Teleman, C., Relative quantum field theory . Commun. Math. Phys. 326(2014), 459476.10.1007/s00220-013-1880-1CrossRefGoogle Scholar
Giansiracusa, J., The framed little 2-discs operad and diffeomorphisms of handlebodies . J. Topol. 4(2011), no. 4, 919941.10.1112/jtopol/jtr021CrossRefGoogle Scholar
Gunningham, S., Jordan, D., and Safronov, P., The finiteness conjecture for skein modules . Invent. Math. 232(2023), 301363.10.1007/s00222-022-01167-0CrossRefGoogle Scholar
Getzler, E. and Kapranov, M., Cyclic operads and cyclic homology . In: Bott, R. and Yau, S.-T. (eds.), Conference proceedings and lecture notes in geometry and topology, International Press, Cambridge, 1995, pp. 167201.Google Scholar
Getzler, E. and Kapranov, M., Modular operads . Compos. Math. 110(1998), 65126.10.1023/A:1000245600345CrossRefGoogle Scholar
Harer, J., The virtual cohomological dimension of the mapping class group of an orientable surface . Invent. Math. 84(1986), no. 2, 157176.10.1007/BF01388737CrossRefGoogle Scholar
Hensel, S., A primer on handlebody groups. In: Ji, L., Papadopoulos, A., and Yau, S.-T. (eds.), Handbook of group actions, V, International Press, Somerville, 2020, pp. 143177.Google Scholar
Johnson-Freyd, T. and Scheimbauer, C., (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories . Adv. Math. 307(2017), 147223.10.1016/j.aim.2016.11.014CrossRefGoogle Scholar
Jian, C. M., Ludwig, A. W. W., Luo, Z. X., Sun, H. Y., and Wang, Z., Establishing strongly-coupled 3D AdS quantum gravity with Ising dual using all-genus partition functions . J. High Energy Phys. 129(2020)Google Scholar
Juhász, A., Defining and classifying TQFTs via surgery . Quantum Topol. 9(2018), no. 2, 229321.10.4171/qt/108CrossRefGoogle Scholar
Kerler, T. and Lyubashenko, V. V., Non-semisimple topological quantum field theories for 3-manifolds with corners, volume 1765 of Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York, 2001.Google Scholar
Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function . Commun. Math. Phys. 147(1992), no. 1, 123.10.1007/BF02099526CrossRefGoogle Scholar
Kontsevich, M., Feynman diagrams and low-dimensional topology . In: Joseph, A., Mignot, F., Murat, F., Prum, B., and Rentschler, R. (eds.), First European congress of mathematics Paris, July 6–10, 1992: Vol. II: Invited lectures (part 2), Birkhäuser, Basel, 1994, pp. 97121.10.1007/978-3-0348-9112-7_5CrossRefGoogle Scholar
Lazaroiu, C. I., On the structure of open-closed topological field theory in two dimensions . Nucl. Phys. B 603(2001), no. 3, 497530.10.1016/S0550-3213(01)00135-3CrossRefGoogle Scholar
Lauda, A. D. and Pfeiffer, H., Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras . Topol. Appl. 155(2008), no. 7, 623666.10.1016/j.topol.2007.11.005CrossRefGoogle Scholar
Luft, E., Actions of the homeotopy group of an orientable 3-dimensional handlebody . Math. Ann. 234(1978), no. 3, 279292.10.1007/BF01420650CrossRefGoogle Scholar
Lyubashenko, V. V., Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity . Commun. Math. Phys. 172(1995), 467516.10.1007/BF02101805CrossRefGoogle Scholar
Lyubashenko, V. V., Modular transformations for tensor categories . J. Pure Appl. Algebra 98(1995), 279327.10.1016/0022-4049(94)00045-KCrossRefGoogle Scholar
Lyubashenko, V. V., Ribbon abelian categories as modular categories . J. Knot Theory Ramif. 5(1996), 311403.10.1142/S0218216596000229CrossRefGoogle Scholar
May, P., The geometry of iterated loop spaces, volume 217 of Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York, 1972.10.1007/BFb0067491CrossRefGoogle Scholar
Mac Lane, S. and Moerdijk, I., Sheaves in geometry and logic, Springer Universitext, Springer, New York, 1992.Google Scholar
Masbaum, G. and Roberts, J., On central extensions of mapping class groups . Math. Ann. 302(1995), 131150.10.1007/BF01444490CrossRefGoogle Scholar
Moore, G. and Seiberg, N., Classical and quantum conformal field theory . Commun. Math. Phys. 123(1989), 177254.10.1007/BF01238857CrossRefGoogle Scholar
Moore, G. and Segal, G., D-branes and K-theory in 2D topological field theory. Preprint, 2006. arXiv:hep-th/0609042 Google Scholar
Mignard, M. and Schauenburg, P., Modular categories are not determined by their modular data . Lett. Math. Phys. 111(2021), no. 60.10.1007/s11005-021-01395-0CrossRefGoogle Scholar
Müller, L., Schweigert, C., Woike, L., and Yang, Y., The Lyubashenko modular functor for Drinfeld centers via non-semisimple string-nets. Preprint, 2023. arXiv:2312.140109 [math.QA].Google Scholar
Müller, L. and Woike, L., Cyclic framed little disks algebras, Grothendieck-Verdier duality and handlebody group representations . Quart. J. Math. 74(2023), no. 1, 163245.10.1093/qmath/haac015CrossRefGoogle Scholar
Müller, L. and Woike, L., The Dehn twist action for quantum representations of mapping class groups . J. Topol. Accepted for publication (2023). arXiv:2311.16020 [math.QA]Google Scholar
Müller, L. and Woike, L., The diffeomorphism group of the genus one handlebody and hochschild homology . Proc. Amer. Math. Soc. 151(2023), no. 6, 23112324.Google Scholar
Müller, L. and Woike, L., Categorified open topological field theories . Proc. AMS (2024). Accepted for publication arXiv:2406.11605 [math.QA]Google Scholar
Müller, L. and Woike, L., Classification of consistent systems of handlebody group representations. Int. Math. Res. Not. 2024(2024), no. 6, 47674803.10.1093/imrn/rnad178CrossRefGoogle Scholar
nLab, Microcosm principle. 2017. https://ncatlab.org/nlab/show/microcosm+principle. Revision 10, most recent revision: 16 from 2024.Google Scholar
Neuchl, M. and Schauenburg, P., Reconstruction in braided categories and a notion of commutative bialgebra . J. Pure Appl. Algebra 124(1998), 241259.10.1016/S0022-4049(96)00093-XCrossRefGoogle Scholar
Obradović, J., Monoid-like definitions of cyclic operads . Theory App. Categ. 32(2017), no. 12, 396436.Google Scholar
Penner, R. C., The decorated Teichmüller space of punctured surfaces . Commun. Math. Phys. 113(1987), no. 2, 299339.10.1007/BF01223515CrossRefGoogle Scholar
Roberts, J., Skeins and mapping class groups . Math. Proc. Camb. Philos. Soc. 115(1994), 5377.10.1017/S0305004100071917CrossRefGoogle Scholar
Reshetikhin, N. and Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups . Commun. Math. Phys. 127(1990), 126.10.1007/BF02096491CrossRefGoogle Scholar
Reshetikhin, N. and Turaev, V., Invariants of 3-manifolds via link polynomials and quantum groups . Invent. Math. 103(1991), 547598.10.1007/BF01239527CrossRefGoogle Scholar
Segal, G., Two-dimensional conformal field theories and modular functors . In: IX International conference on mathematical physics (IAMP), 1988.Google Scholar
Shimizu, K., On unimodular finite tensor categories . Int. Math. Res. Not. 2017(2017), no. 1, 277322.Google Scholar
Shimizu, K., Non-degeneracy conditions for braided finite tensor categories . Adv. Math. 355(2019), 106778.10.1016/j.aim.2019.106778CrossRefGoogle Scholar
Shimizu, K., Relative Serre functor for comodule algebras . J. Algebra 634(2023), 237305.10.1016/j.jalgebra.2023.07.015CrossRefGoogle Scholar
Schommer-Pries, C. J., The classification of two-dimensional extended topological field theories. Ph.D. thesis, Berkeley, 2009.Google Scholar
Stolz, S. and Teichner, P., In: Sati, H. and Schreiber, U. (eds.), Supersymmetric field theories and generalized cohomology, Proceedings of Symposia in Pure Mathematics, 83, American Mathematical Society, Providence, 2011, pp. 279340.Google Scholar
Street, R., Frobenius monads and pseudomonoids . J. Math. Phys. 45(2004), no. 10, 39303948.10.1063/1.1788852CrossRefGoogle Scholar
Salvatore, P. and Wahl, N., Framed discs operads and Batalin-Vilkovisky algebras . Quart. J. Math. 54(2003), 213231.10.1093/qmath/hag012CrossRefGoogle Scholar
Thomason, R. W., Homotopy colimits in the category of small categories . Math. Proc. Cambridge Philos. Soc. 85(1979), no. 1, 91109.10.1017/S0305004100055535CrossRefGoogle Scholar
Tillmann, U., Structures for $k$ -linear categories and the definition of a modular functor . J. London Math. Soc. 58(1998), no. 1, 208228.10.1112/S0024610798006383CrossRefGoogle Scholar
Turaev, V. G., Quantum invariants of knots and 3-manifolds, volume 18 of Studies in Mathematics, De Gruyter, 1994.10.1515/9783110883275CrossRefGoogle Scholar
Wahl, N., Ribbon braids and related operads, Ph.D. thesis, Oxford, 2001.Google Scholar
Willerton, S., The twisted Drinfeld double of a finite group via gerbes and finite groupoids . Algebr. Geom. Topol. 8(2008), 14191457.10.2140/agt.2008.8.1419CrossRefGoogle Scholar
Wahl, N. and Westerland, C., Hochschild homology of structured algebras . Adv. Math. 288(2016), 240307.10.1016/j.aim.2015.10.017CrossRefGoogle Scholar