Published online by Cambridge University Press: 20 November 2018
Let   $\mathbf{H}$  be the Hilbert function of some set of distinct points in
 $\mathbf{H}$  be the Hilbert function of some set of distinct points in   ${{\mathbb{P}}^{n}}$ and let
 ${{\mathbb{P}}^{n}}$ and let   $\alpha \,=\,\alpha (\mathbf{H})$  be the least degree of a hypersurface of
 $\alpha \,=\,\alpha (\mathbf{H})$  be the least degree of a hypersurface of   ${{\mathbb{P}}^{n}}$ containing these points. Write
 ${{\mathbb{P}}^{n}}$ containing these points. Write   $\alpha ={{d}_{s}}+{{d}_{s-1}}+\cdot \cdot \cdot +{{d}_{1}}$ (where
 $\alpha ={{d}_{s}}+{{d}_{s-1}}+\cdot \cdot \cdot +{{d}_{1}}$ (where   ${{d}_{i}}>0$ ). We canonically decompose
 ${{d}_{i}}>0$ ). We canonically decompose   $\mathbf{H}$  into
 $\mathbf{H}$  into   $s$  other Hilbert functions
 $s$  other Hilbert functions   $\text{H}\leftrightarrow \text{(}{{\text{H}'}_{s}}\text{,}...\text{,}{{\text{H}'}_{1}}\text{)}$ and show how to find sets of distinct points
 $\text{H}\leftrightarrow \text{(}{{\text{H}'}_{s}}\text{,}...\text{,}{{\text{H}'}_{1}}\text{)}$ and show how to find sets of distinct points   ${{\mathbb{Y}}_{s}},...,{{\mathbb{Y}}_{1}}$ , lying on reduced hypersurfaces of degrees
 ${{\mathbb{Y}}_{s}},...,{{\mathbb{Y}}_{1}}$ , lying on reduced hypersurfaces of degrees   ${{d}_{s}},...,{{d}_{1}}$ (respectively) such that the Hilbert function of
 ${{d}_{s}},...,{{d}_{1}}$ (respectively) such that the Hilbert function of   ${{\mathbb{Y}}_{i}}$ is
 ${{\mathbb{Y}}_{i}}$ is   ${{\text{H'}}_{i}}$ and the Hilbert function of
 ${{\text{H'}}_{i}}$ and the Hilbert function of   $\mathbb{Y}=\bigcup _{i=1}^{s}\,{{\mathbb{Y}}_{i}}$ is
 $\mathbb{Y}=\bigcup _{i=1}^{s}\,{{\mathbb{Y}}_{i}}$ is   $\mathbf{H}$ . Some extremal properties of this canonical decomposition are also explored.
 $\mathbf{H}$ . Some extremal properties of this canonical decomposition are also explored.
 . J. Pure Appl. Algebra 
               122(1997), 209–241.Google Scholar
               . J. Pure Appl. Algebra 
               122(1997), 209–241.Google Scholar