Skip to main content
×
×
Home

Degrees of Regular Sequences With a Symmetric Group Action

  • Federico Galetto (a1), Anthony Vito Geramita (a2) and David Louis Wehlau (a3)
Abstract

We consider ideals in a polynomial ring that are generated by regular sequences of homogeneous polynomials and are stable under the action of the symmetric group permuting the variables. In previous work, we determined the possible isomorphism types for these ideals. Following up on that work, we now analyze the possible degrees of the elements in such regular sequences. For each case of our classification, we provide some criteria guaranteeing the existence of regular sequences in certain degrees.

Copyright
Footnotes
Hide All

The authors gratefully acknowledge the partial support of NSERC for this work.

Footnotes
References
Hide All
[1] Blokhuis, Aart, Brouwer, Andries E., and Szőnyi, Tamás, Proof of a conjecture by Ðoković on the Poincaré series of the invariants of a binary form . Indag. Math. (N.S.) 24(2013), no. 4, 766773. https://doi.org/10.1016/j.indag.2012.12.004.
[2] Broué, Michel, Introduction to complex reflection groups and their braid groups . Lecture Notes in Mathematics, 1988. Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-11175-4.
[3] Bruns, Winfried and Herzog, Jügen, Cohen-Macaulay rings . Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.
[4] Chen, Ri-Xiang, On two classes of regular sequences . J. Commut. Algebra 8(2016), no. 1, 2942. https://doi.org/10.1216/JCA-2016-8-1-29.
[5] Conca, Aldo, Krattenthaler, Christian, and Watanabe, Junzo, Regular sequences of symmetric polynomials . Rend. Semin. Mat. Univ. Padova 121(2009), 179199. https://doi.org/10.4171/RSMUP/121-11.
[6] Dixmier, Jacques, Quelques résultats et conjectures concernant les séries de Poincaré des invariants des formes binaires . In: Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 36ème année (Paris, 1983–1984). Lecture Notes in Mathematics, 1146. Springer, Berlin, 1985, pp. 127160. https://doi.org/10.1007/BFb0074537.
[7] Ðoković, Dragomir Ž., A heuristic algorithm for computing the Poincaré series of the invariants of binary forms . Int. J. Contemp. Math. Sci. 1(2006), 557568. https://doi.org/10.12988/ijcms.2006.06059.
[8] Eisenbud, David, Commutative algebra . Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-5350-1.
[9] Fulton, William, Young tableaux . London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
[10] Galetto, Federico, Geramita, Anthony V., and Wehlau, David L., Symmetric complete intersections . Comm. Algebra 46(2018), 21942204. https://doi.org/10.1080/00927872.2017.1372453.
[11] Goodman, Roe and Wallach, Nolan R., Symmetry, representations, and invariants . Graduate Texts in Mathematics, 255. Springer, Dordrecht, 2009. https://doi.org/10.1007/978-0-387-79852-3.
[12] Granville, Andrew, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers . In: Organic mathematics. CMS Conf. Proc., 20. Amer. Math. Soc., Providence, RI, 1997, pp. 253276.
[13] Grayson, Daniel R. and Stillman, Michael E., Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.
[14] Kumar, Neeraj and Martino, Ivan, Regular sequences of power sums and complete symmetric polynomials . Matematiche (Catania), 67(2012), no. 1, 103117.
[15] Lam, Tsit Yuen and Leung, Ka Hin, On vanishing sums of roots of unity . J. Algebra 224(2000), no. 1, 91109. https://doi.org/10.1006/jabr.1999.8089.
[16] Lang, Serge, Algebra . Third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002. https://doi.org/10.1007/978-1-4613-0041-0.
[17] Littelmann, Peter and Procesi, Claudio, On the Poincaré series of the invariants of binary forms . J. Algebra 133(1990), no. 2, 490499. https://doi.org/10.1016/0021-8693(90)90284-U.
[18] Alfonsín, Jorge Luis Ramírez, The Diophantine Frobenius problem . Oxford Lecture Series in Mathematics and its Applications, 30. Oxford University Press, Oxford, 2005. https://doi.org/10.1093/acprof:oso/9780198568209.001.0001.
[19] Sagan, Bruce E., The symmetric group . Second edition. Graduate Texts in Mathematics, 203. Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-6804-6.
[20] Stanley, Richard P., Enumerative combinatorics . Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511609589.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed