Skip to main content

Equivariant Map Queer Lie Superalgebras

  • Lucas Calixto (a1), Adriano Moura (a1) and Alistair Savage (a2)

An equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from an algebraic variety (or scheme) X to a queer Lie superalgebra q that are equivariant with respect to the action of a finite group Γ acting on X and q. In this paper, we classify all irreducible finite-dimensional representations of the equivariant map queer Lie superalgebras under the assumption that Γ is abelian and acts freely on X. We show that such representations are parameterized by a certain set of Γ-equivariant finitely supported maps from X to the set of isomorphism classes of irreducible finite-dimensional representations of q. In the special case where X is the torus, we obtain a classification of the irreducible finite-dimensional representations of the twisted loop queer superalgebra.

Hide All
[Che95] Cheng, S.-J., Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras. J. Algebra 173(1995), no. 1,143.http://dx.doi.Org/10.1006/jabr.1995.1076
[CW12] Cheng, S.-J. and Wang, W., Dualities and representations of Lie superalgebras. Graduate Studies in Mathematics, 144, American Mathematical Society, Providence, RI, 2012.
[Gor06] Gorelik, M., Shapovalov determinants of Q-type Lie superalgebras. IMRP Int. Math. Res. Pap. 2006, Art. ID 96895, 71.
[GP04] Grantcharov, D. and Pianzola, A., Automorphisms and twisted loop algebras of finite-dimensional simple Lie superalgebras. Int. Math. Res. Not. 73(2004), 3937–3962. http://dx.doi.Org/10.1155/S1073792804142141
[GS08] Gorelik, M. and Serganova, V., On representations of the affine superalgebra q(n)(2). Mosc. Math. J. 8(2008), no. 1. 91-109, 184.
[Hus94] Husemoller, D., Vibre bundles. Third ed., Graduate Texts in Mathematics, 20, Springer-Verlag, New York, 1994.
[Kac77] Kac, V. G., Lie superalgebras. Advances in Math. 26(1977), no. 1, 896.http://dx.doi.Org/10.1016/0001-8708(77)90017-2
[Kac78] Kac, V. G., Representations of classical Lie superalgebras. In: Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math, 676, Springer, Berlin, 1978, pp. 597626.
[Musl2] Musson, I. M., Lie superalgebras and enveloping algebras. Graduate Studies in Mathematics, 131, American Mathematical Society, Providence, RI, 2012.
[NS13] Neher, E. and Savage, A., A survey of equivariant map algebras with open problems. In: Recent developments in algebraic and combinatorial aspects of representation theory, Contemp. Math., 602, American Mathematical Society, Providence, RI, 2013, pp. 165182.http://dx.doi.Org/10.1090/conm/602/12024
[NSS12] Neher, E., Savage, A., and Senesi, P., Irreducible finite-dimensional representations of equivariant map algebras. Trans. Amer. Math. Soc. 364(2012), no. 5, 26192646.
[Pen86] Penkov, I. B., Characters of typical irreducible finite-dimensional q(n)-modules. Funktsional. Anal, i Prilozhen. 20(1986), no. 1, 37–45, 96.
[PS97] Penkov, I. and Serganova, V., Characters of finite-dimensional irreducible q(n)-modules. Lett.Math. Phys. 40(1997), 147158.http://dx.doi.Org/10.1023/A:1007367827082
[Savl4] Savage, A., Equivariant map superalgebras. Math. Z. 277(2014), no. 1–2, 373399.http://dx.doi.Org/10.1007/s00209-013-1261-7
[Ser84] Serganova, V. V., Automorphisms of simple Lie superalgebras.(Russian) Izv. Akad. Nauk SSSR Ser. Mat. 48(1984), 585598.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed