Skip to main content Accessibility help

A Forcing Axiom Deciding the Generalized Souslin Hypothesis

  • Chris Lambie-Hanson (a1) and Assaf Rinot (a1)


We derive a forcing axiom from the conjunction of square and diamond, and present a few applications, primary among them being the existence of super-Souslin trees. It follows that for every uncountable cardinal $\unicode[STIX]{x1D706}$ , if $\unicode[STIX]{x1D706}^{++}$ is not a Mahlo cardinal in Gödel’s constructible universe, then $2^{\unicode[STIX]{x1D706}}=\unicode[STIX]{x1D706}^{+}$ entails the existence of a $\unicode[STIX]{x1D706}^{+}$ -complete $\unicode[STIX]{x1D706}^{++}$ -Souslin tree.



Hide All

This research was partially supported by the Israel Science Foundation (grant #1630/14).



Hide All
[1] Brodsky, A. M. and Rinot, A., Distributive Aronszajn trees. To appear in Fundamenta Mathematicae, 2019.
[2] Brodsky, A. M. and Rinot, A., A microscopic approach to Souslin-tree constructions. Part I . Ann. Pure Appl. Logic 168(2017), no. 11, 19492007.
[3] Brodsky, A. M. and Rinot, A., Reduced powers of Souslin trees . Forum Math. Sigma 5(2017), e2.
[4] Devlin, K. J., Aspects of constructibility . Lecture Notes in Mathematics, 354, Springer-Verlag, Berlin-New York, 1973.
[5] Devlin, K. J., Constructibility Perspectives in mathematical logic. Springer-Verlag, Berlin, 1984.
[6] Foreman, M., An 1-dense ideal on 2 . Israel J. Math. 108(1998), 253290.
[7] Foreman, M., Magidor, M., and Shelah, S., Martin’s maximum, saturated ideals and nonregular ultrafilters. II . Ann. of Math. (2) 127(1988), no. 3, 521545.
[8] Gitik, M. and Rinot, A., The failure of diamond on a reflecting stationary set . Trans. Amer. Math. Soc. 364(2012), no. 4, 17711795.
[9] Jech, T., Non-provability of Souslin’s hypothesis . Comment. Math. Univ. Carolinae 8(1967), 291305.
[10] Jensen, R. B., The fine structure of the constructible hierarchy . Ann. Math. Logic 4(1972), 229308. erratum, ibid. 4(1972), 443.
[11] Jensen, R. B., Souslin’s hypothesis is incompatible with V= L . Notices Amer. Math. Soc 15(1968).
[12] Kurepa, G., Ensembles ordonnés et ramifiés. Publications de l’Institut Mathématique Beograd, 1935.
[13] Lambie-Hanson, C., Aronszajn trees, square principles, and stationary reflection . MLQ Math. Log. Q. 63(2017), no. 3–4, 265281.
[14] Laver, R. and Shelah, S., The 2-Souslin hypothesis . m Trans. Amer. Math. Soc. 264(1981), no. 2, 411417.
[15] Mitchell, W., Aronszajn trees and the independence of the transfer property . Ann. Math. Logic 5(1972/73), 2146.
[16] Raghavan, D. and Todorcevic, S., Suslin trees, the bounding number, and partition relations. Israel J. Math., to appear.
[17] Rinot, A., Higher Souslin trees and the GCH, revisited . Adv. Math. 311(2017), 510531.
[18] Shelah, S., Diamonds . Proc. Amer. Math. Soc. 138(2010), no. 6, 21512161.
[19] Shelah, S., Laflamme, C., and Hart, B., Models with second order properties. V. A general principle . Ann. Pure Appl. Logic 64(1993), no. 2, 169194.
[20] Shelah, S. and Stanley, L., S-forcing. I. A “black-box” theorem for morasses, with applications to super-Souslin trees . Israel J. Math. 43(1982), no. 3, 185224.
[21] Shelah, S. and Stanley, L., S-forcing. IIa. Adding diamonds and more applications: coding sets, Arhangelskii’s problem and ${\mathcal{L}}[Q_{1}^{{<}\unicode[STIX]{x1D714}},Q_{2}^{1}]$ . Israel J. Math. 56(1986), 1–65.
[22] Shelah, S. and Stanley, L., Weakly compact cardinals and nonspecial Aronszajn trees . Proc. Amer. Math. Soc. 104(1988), no. 3, 887897.
[23] Solovay, R. M. and Tennenbaum, S., Iterated Cohen extensions and Souslin’s problem . Ann. of Math. (2) 94(1971), 201245.
[24] Souslin, M. Y., Problème 3 . Fundamenta Math. 1(1920), no. 1, 223.
[25] Specker, E., Sur un problème de Sikorski . Colloquium Math. 2(1949), 912.
[26] Tennenbaum, S., Souslin’s problem . Proc. Nat. Acad. Sci. U.S.A. 59(1968), 6063.
[27] Todorcevic, S., Walks on ordinals and their characteristics . Progress in Mathematics, 263, Birkhäuser Verlag, Basel, 2007.
[28] Todorcevic, S. and Torres Perez, V., Conjectures of Rado and Chang and special Aronszajn trees . MLQ Math. Log. Q. 58(2012), no. 4–5, 342347.
[29] Velleman, D., Souslin trees constructed from morasses. In: Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, American Mathematical Society, Providence, RI, 1984, pp. 219–241.
[30] Velleman, D., Morasses, diamond, and forcing . Ann. Math. Logic 23(1982), no. 2–3, 199281.
[31] Zwicker, W. S., $P_{k}\unicode[STIX]{x1D706}$  combinatorics. I. Stationary coding sets rationalize the club filter. In: Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, American Mathematic Society, Providence, RI, 1984, pp. 243–259.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed