[BFGR06] Bruin, N., Flynn, V., Gonzàlez, J., and Rotger, V., On finiteness conjectures for endomorphism algebras of abelian surfaces.
Math. Proc. Cambridge Philos. Soc. 141(2006), no. 3, 383–408
http://dx.doi.org/10.1017/S0305004106009613.
[Cla03] Clark, P. L., Rational points on Atkin–Lehner quotients of Shimura curves.
Thesis (Ph.D.)–Harvard University, ProQuest LLC, Ann Arbor, MI, 2003.
[Gil10] Gillibert, F., Points rationnels sur les quotients d'Atkin–Lehner de courbes de Shimura de discriminant pq. arxiv:1012.3414v1, 2010.
[Jor81] Jordan, B.W., On the Diophantine arithmetic of Shimura curves.
Thesis (Ph.D.)–Harvard University, Proquest LLC, Ann Arbor, MI, 1981.
[Jor86] Jordan, B.W., Points on Shimura curves rational over number fields.
J. Reine Angew. Math. 371(1986), 92–114.
[Me90] Mestre, J.-F., Construction de courbes de genre 2 à partir de leurs modules.
In: Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math., 94, Birkhäuser Boston, Boston, MA, 1991, pp. 313–334.
[Mil79] Milne, J. S., Points on Shimura varieties mod p.
In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., 33, American Mathematical Society, Providence, RI, 1979, pp. 165–184.
[Mil86] Milne, J. S., Abelian varieties. In: Arithmetic geometry (Storrs, Conn, 1984), Springer, New York, 1986, pp. 103–150.
[Mor81] Morita, Y., Reduction modulo β of Shimura curves.
HokkaidoMath. J. 10(1981), no. 2, 209–238.
[Ogg83] Ogg, A. P., Real points on Shimura curves.
In: Arithmetic and geometry, Vol. 1, Progr. Math., 35, Birkäuser Boston, Boston, MA, 1983, pp. 277–307.
[Ogg85] Ogg, A. P., Mauvaise réduction des courbes de Shimura.
Séminaire de théorie des nombres, Paris 1983–84, Progr. Math., 59, Birkäuser Boston, MA, 1985, pp. 199–217.
[Oht64] Ohta, M., On ladic representations of Galois groups obtained from certain two-dimensional abelian varieties.
J. Fac. Sci. Univ. Tokyo IA Math. 21(1974), 299–308.
[Rot03] Rotger, V., Quaternions, polarizations and class numbers.
J. Reine Angew. Math. 561(2003), 177–197.
[Rot08] Rotger, V., Which quaternion algebras act on a modular abelian variety?
Math. Res. Lett. 15(2008), no. 2, 251–263.
[RSY05] Rotger, V., Skorobogatov, A., and Yafaev, A., Failure of the Hasse principle for Atkin–Lehner quotients of Shimura curves over Q.
Moscow Math. J. 5(2005), no. 2, 463–476, 495.
[Shi63] Shimura, G., On analytic families of polarized abelian varieties and automorphic functions.
Ann.of Math. 78(1963), 149–192
http://dx.doi.org/10.2307/1970507.
[Sko01] Skorobogatov, A., Torsors and rational points.
Cambridge Tracts in Mathematics, 144, Cambridge University Press, Cambridge, 2001.
[Sko05] Skorobogatov, A., Shimura coverings of Shimura curves and the Manin obstruction.
Math. Res. Lett. 12(2005), no. 5–6, 779–788.
[Vig80] Vignéras, M. F., Arithmétique des algébres de quaternions.
Lecture Notes in Mathematics, 800, Springer, Berlin, 1980.