Skip to main content
×
×
Home

A Generalized Variational Principle

  • Philip D. Loewen (a1) and Xianfu Wang (a2)
Abstract

We prove a strong variant of the Borwein-Preiss variational principle, and show that on Asplund spaces, Stegall's variational principle follows from it via a generalized Smulyan test. Applications are discussed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A Generalized Variational Principle
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A Generalized Variational Principle
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A Generalized Variational Principle
      Available formats
      ×
Copyright
References
Hide All
[1] Borwein, J. M. and Preiss, D., A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303(1987), 517527.
[2] Clarke, F. H., Ledyaev, Yu. S., Stern, R. J. and Wolenski, P. R., Nonsmooth Analysis and Control Theory. Graduate Texts in Math. 178, Springer-Verlag, New York, 1998.
[3] Collier, J. B., The dual of a space with the Radon-Nikodym property. Pacific J. Math. 64(1976), 103106.
[4] Deville, R., Godefroy, G. and Zizler, V., Smoothness and Renorming in Banach Spaces. Pitman Monographs Surveys Pure Appl. Math. Vol. 64, Longman, 1993.
[5] Deville, R. and Revalski, J. P., Porosity of ill-posed problems. Proc. Amer.Math. Soc. 128(1999), 11171124.
[6] Ekeland, I., On the variational principle. J. Math. Anal. Appl. 47(1974), 324353.
[7] Fabian, M. and Zizler, V., An elementary approach to some questions in higher order smoothness in Banach spaces. Extracta Math. 14(1999), 295327.
[8] Fabian, M. and Mordukhovich, B. S., Nonsmooth characterizations of Asplund spaces and smooth variational principles. Set-Valued Anal. 6(1998), 381406.
[9] Giles, J. R., Convex analysis with application in differentiation of convex functions. Research Notes in Mathematics 58, Pitman, 1982.
[10] Georgiev, P. G., The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl. 131(1988), 121.
[11] Ioffe, A. D., Approximate subdifferentials and applications II. Mathematika 33(1986), 111128.
[12] Li, Yongxin and Shi, Shuzhong, A generalization of Ekeland's ε-variational principle and its Borwein-Preiss smooth variant. J. Math. Anal. Appl. 246(2000), 308319.
[13] Phelps, R. R., Convex functions, monotone operators and differentiability. 2nd edition, Lecture Notes in Mathematics 1364, Springer-Verlag, Berlin, 1993.
[14] Preiss, D. and Zajicek, L., Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91(1984), 202204.
[15] Stegall, C., Optimization of functions on certain subsets of Banach spaces. Math. Ann. 236(1978), 171176.
[16] Sullivan, F., A characterization of complete metric spaces. Proc. Amer. Math. Soc. 83(1981), 345346.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed