Skip to main content Accessibility help
×
×
Home

Global Holomorphic Functions in Several Noncommuting Variables

  • Jim Agler (a1) and John E. McCarthy (a2)
Abstract

We define a free holomorphic function to be a function that is locally, with respect to the free topology, a bounded nc-function. We prove that free holomorphic functions are the functions that are locally uniformly approximable by free polynomials. We prove a realization formula and an Oka-Weil theorem for free analytic functions.

Copyright
References
Hide All
[1] Agler, J., On the representation of certain holomorphic functions defined on a polydisc. Oper. Theory Adv. Appl. 48, Birkhäuser, Basel, 1990, 4766.
[2] Agler, J. and McCarthy, J. E., Operator theory and the Oka extension theorem. Hiroshima Math. J., to appear.
[3] Agler, J., Pick interpolation for free holomorphic functions. Amer. J. Math, to appear.
[4] Agler, J., Pick Interpolation and Hilbert Function Spaces. American Mathematical Society, Providence, 2002.
[5] Agler, J., McCarthy, J. E., and Young, N. J., On the representation of holomorphic functions on polyhedra. Michigan Math. J. 62(2013), 675689.http://dx.doi.org/10.1307/mmj/1387226159
[6] Alexander, H. and Wermer, J., Several complex variables and Banach algebras. Third edition. Springer, New York, 1998.
[7] Alpay, D. and Kalyuzhnyi-Verbovetzkii, D. S., Matrix- J-unitary non-commutative rational formal power series. In: The state space method generalizations and applications, Oper. Theory Adv. Appl. 161, Birkhäuser, Basel, 2006, 49113.
[8] Ambrozie, C.-G. and Timotin, D., A von Neumann type inequality for certain domains in Cn. Proc. Amer. Math. Soc. 131(2003), 859869.http://dx.doi.org/10.1090/S0002-9939-02-06321-9
[9] Arveson, W. B., Interpolation problems in nest algebras. J. Funct. Anal. 20(1975), 208233.http://dx.doi.org/10.1016/0022-1236(75)90041-5
[10] Ball, J. A. and Bolotnikov, V., Realization and interpolation for Schur–Agler class functions on domains with matrix polynomial defining function in Cn. J. Funct. Anal. 213(2004), 4587.http://dx.doi.org/10.1016/j.jfa.2004.04.008
[11] Ball, Joseph A., Groenewald, Gilbert, and Malakorn, Tanit, Conservative structured noncommutative multidimensional linear systems. In: The state space method generalizations and applications, Oper. Theory Adv. Appl. 161, Birkhäuser, Basel, 2006, 179223.
[12] Biswas, Shibananda, Kaliuzhnyi– Verbovetskyi, Dmitry S., and Vinnikov, Victor, Foundations of non– commutative function theory, Appendix A. .
[13] Carleson, L., Interpolations by bounded analytic functions and the corona problem. Ann. of Math. 76(1962), 547559. http://dx.doi.org/10.2307/1970375
[14] William Helton, J., Klep, Igor, and McCullough, Scott, Analytic mappings between noncommutative pencil balls. J. Math. Anal. Appl. 376(2011), 407428. http://dx.doi.org/10.1016/j.jmaa.2010.11.040
[15] William Helton, J., Klep, Igor, and McCullough, Scott, Proper analytic free maps. J. Funct. Anal. 260(2011), 14761490.http://dx.doi.org/10.1016/j.jfa.2010.11.007
[16] William Helton, J., Klep, Igor, and McCullough, Scott, Free analysis, convexity and LMI domains. In: Mathematical methods in systems, optimization, and control, Oper. Theory Adv. Appl. 41, Springer, Basel, 2012, 195219.
[17] William Helton, J. and McCullough, Scott, Every convex free basic semi-algebraic set has an LMI representation. Ann. of Math. (2) 176(2012), 9791013.http://dx.doi.org/10.4007/annals.2012.176.2.6
[18] Kaliuzhnyi-Verbovetskyi, Dmitry S. and Vinnikov, Victor, Foundations of non-commutative function theory. .
[19] Popescu, Gelu, Free holomorphic functions on the unit ball of B(H)n. J. Funct. Anal. 241(2006), 268333. http://dx.doi.org/10.1016/j.jfa.2006.07.004
[20] Popescu, Gelu, Free holomorphic functions and interpolation. Math. Ann. 342(2008), 130.http://dx.doi.org/10.1007/s00208-008-0219-2
[21] Popescu, Gelu, Free holomorphic automorphisms of the unit ball of B(H)n. J. Reine Angew. Math. 638(2010), 119168.
[22] Popescu, Gelu, Free biholomorphic classification of noncommutative domains. Int. Math. Res. Not. IMRN 2011 (4), 784850.
[23] Rosenblum, M., A corona theorem for countably many functions. Integral Equations and Operator Theory 3(1980), 125137.http://dx.doi.org/10.1007/BF01682874
[24] Taylor, J. L., Functions of several non-commuting variables. Bull. Amer. Math. Soc. 79(1973), 134.http://dx.doi.org/10.1090/S0002-9904-1973-13077-0
[25] Voiculescu, Dan, Free analysis questions. I. Duality transform for the coalgebra of δX : B. Int. Math. Res. Not. 2004 (16), 793822.
[26] Voiculescu, Dan, Free analysis questions II: the Grassmannian completion and the series expansions at the origin. J. Reine Angew. Math. 645(2010), 155236.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed