Skip to main content Accessibility help
×
×
Home

The Ground State Problem for a Quantum Hamiltonian Model Describing Friction

  • Laurent Bruneau (a1)
Abstract

In this paper, we consider the quantum version of a Hamiltonian model describing friction. This model consists of a particle which interacts with a bosonic reservoir representing a homogeneous medium through which the particle moves. We show that if the particle is confined, then the Hamiltonian admits a ground state if and only if a suitable infrared condition is satisfied. The latter is violated in the case of linear friction, but satisfied when the friction force is proportional to a higher power of the particle speed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Ground State Problem for a Quantum Hamiltonian Model Describing Friction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Ground State Problem for a Quantum Hamiltonian Model Describing Friction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Ground State Problem for a Quantum Hamiltonian Model Describing Friction
      Available formats
      ×
Copyright
References
Hide All
[A1] Arai, A., On a model of a harmonic oscillator coupled to a quantized, massless, scalar field. I. J. Math. Phys. 22(1981), 25392548.
[A2] Arai, A., Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation. Rev.Math. Phys 13(2001), no. 9, 10751094.
[AH] Arai, A. and Hirokawa, M., On the existence and uniqueness of ground states of a generalized spin-boson model. J. Func. Anal. 151(1997), no. 2, 455503.
[BFS1] Bach, V., Fröhlich, J., and Sigal, I., Quantum electrodynamics of confined nonrelativistic particle. Adv. Math. 137(1998), no. 2, 299395.
[BFS2] Bach, V., Fröhlich, J., and Sigal, I., Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Comm. Math. Phys. 207(1999), no. 2, 249290.
[B1] Bruneau, L., The ground state problem for a quantum Hamiltonian describing friction. arxivmath-ph/0306011, 2003.
[B2] Bruneau, L., Modèle hamiltonien pour le frottement linéaire en milieu homogène. Ph.D. thesis, Université de Lille-1, 2002.
[BDB] Bruneau, L. and De Bièvre, S., A Hamiltonian model for linear friction in a homogeneous medium. Comm. Math. Phys. 229(2002), no. 3, 511542.
[D] Dereziński, J., Van Hove Hamiltonians—exactly solvable models of the infrared and ultraviolet problem. Ann. Henri Poincaré, 4(2003), no. 4, 713738.
[DG1] Dereziński, J. and Gérard, C., Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11(1999), no. 4, 383450.
[DG2] Dereziński, J. and Gérard, C., Scattering theory of infrared divergent Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 5(2004), no. 3, 523577.
[DJ] Dereziński, J. J. and Jakšić, V., Spectral theory of Pauli-Fierz operators. J. Func. Anal. 180(2001), no. 2, 243327.
[Fr] Friedrichs, K. O., Mathematical Aspects of Quantum Theory of Fields. Interscience Publishers, New York, 1953.
[G] Gérard, C. C., On the existence of ground states for massless Pauli-Fierz Hamiltonians. Ann. Henri. Poincaré. 1(2000), no. 3, 443459.
[GJ] Glimm, J. and Jaffe, A., The λ(ϕ4)2 quantum field theory without cutoffs. II. The field operators and the approximate vacuum. Ann. of Math. 91(1970), 362401.
[GLL] Griesemer, M., Lieb, E. H., and Loss, M., Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(2001), no. 3, 557595.
[KKS] Komech, A., Kunze, M., and Spohn, H., Long-time asymptotics for a classical particle interacting with a scalar wave field. Comm. Partial Differential Equations 22(1997), no. 1-2, 307335.
[LMS] Lörinczi, J. , Minlos, R. A. and Spohn, H., The infrared behaviour in Nelson's model of a quantum particle coupled to a massless scalar field. Ann. Henri. Poincaré 3(2002), no. 2, 269295.
[RS1] Reed, M. M. and Simon, B., Methods of Modern Mathematical Physics. 1: Functional Analysis. Academic Press, London, 1976.
[RS2] Reed, M. M. and Simon, B., Methods of Modern Mathematical Physics. 2. Academic Press, London 1976.
[VH] Van Hove, L., Les difficultés de divergences pour un modèle particulier de champ quantifié. Physica 18(1952), 145159.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed