Skip to main content
×
×
Home

Growth of Homology of Centre-by-metabelian Pro- $p$ Groups

  • Dessislava H. Kochloukova (a1) and Aline G. S. Pinto (a2)
Abstract

For a centre-by-metabelian pro- $p$ group $G$ of type $\text{FP}_{2m}$ , for some $m\geqslant 1$ , we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p})<\infty$ , for all $0\leqslant i\leqslant m$ , where ${\mathcal{A}}$ is the set of all subgroups of $p$ -power index in $G$ and, for a finitely generated abelian pro- $p$ group $V$ , rk $V=\dim V\otimes _{\mathbb{Z}_{p}}\mathbb{Q}_{p}$ .

Copyright
Footnotes
Hide All

Author D. H. K. was partially supported by “bolsa de produtividade em pesquisa” 303350/2013-0 CNPq, Brazil and “projeto de pesquisa regular” FAPESP 2016/05678-3; author A. G. S. P. was partially supported by “Projeto Universal 482658/2013-4” from CNPq, Brazil.

Footnotes
References
Hide All
[1] Baumslag, G., Subgroups of finitely presented metabelian groups . J. Austral. Math. Soc. 16(1973), 98110. https://doi.org/10.1017/S1446788700013987.
[2] Bieri, R., Homological dimension of discrete groups. Queen Mary College Mathematical Notes, London, 1981.
[3] Bieri, R. and Strebel, R., Valuations and finitely presented metabelian groups . Proc. London Math. Soc. (3) 41(1980), no. 3, 439464. https://doi.org/10.1112/plms/s3-41.3.439.
[4] Bridson, M. R. and Kochloukova, D. H., The torsion-free rank of homology in towers of soluble pro-p groups . Israel J. Maths. 219(2017), no. 2, 817834. https://doi.org/10.1007/s11856-017-1499-6.
[5] Bryant, R. M. and Groves, J. R. J., Finitely presented centre-by-metabelian Lie algebras . Bull. Austral. Math. Soc. 60(1999), no. 2, 221226. https://doi.org/10.1017/S0004972700036352.
[6] Corob Cook, G., Bieri-Eckmann criteria for profinite groups . Israel J. Math. 212(2016), no. 2, 857893. https://doi.org/10.1007/s11856-016-1311-z.
[7] Corob Cook, G., On profinite groups of type FP . Adv. Math. 294(2016), 216255. https://doi.org/10.1016/j.aim.2016.02.020.
[8] Dixon, J. D., du Sautoy, M. P. F., Mann, A., and Segal, D., Analytic pro-p groups. Second edition. Cambridge Studies in Advanced Mathematics, 61. Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511470882.
[9] Groves, J. R. J., Finitely presented centre-by-metabelian groups . J. London Math. Soc. (2) 18(1978), no. 1, 6569. https://doi.org/10.1112/jlms/s2-18.1.65.
[10] Groves, J. R. J. and Kochloukova, D. H., Embedding properties of metabelian Lie algebras and metabelian discrete groups . J. London Math. Soc. (2) 73(2006), no. 2, 475492. https://doi.org/10.1112/S0024610705022581.
[11] King, J., Embedding theorems for pro-p groups . Math. Proc. Cambridge Philos. Soc. 123(1998), no. 2, 217226. https://doi.org/10.1017/S0305004197002181.
[12] King, J., Homological finiteness conditions for pro-p groups . Comm. Algebra 27(1999), no. 10, 49694991. https://doi.org/10.1080/00927879908826743.
[13] King, J., A geometric invariant for metabelian pro-p groups . J. London Math. Soc. (2) 60(1999), no. 1, 8394. https://doi.org/10.1112/S0024610799007693.
[14] Kochloukova, D. H., Metabelian pro-p groups of type FP m . J. Group Theory 3(2000), no. 4, 419431. https://doi.org/10.1515/jgth.2000.033.
[15] Kochloukova, D. H. and Mokari, F. Y., Virtual rational Betti numbers of abelian-by-polycyclic groups . J. Algebra 443(2015), 7598. https://doi.org/10.1016/j.jalgebra.2015.07.005.
[16] Kochloukova, D. H. and Pinto, A. G. S., Embedding properties of metabelian pro-p groups . J. Group Theory. 9(2006), no. 4, 455465. https://doi.org/10.1515/JGT.2006.029.
[17] Kochloukova, D. H. and Pinto, A. G. S., Centre-by-metabelian pro-p groups of type FP m . Math. Proc. Cambridge Philos. Soc. 145(2008), no. 2, 305309. https://doi.org/10.1017/S0305004108001163.
[18] Kochloukova, D. H. and da Silva, F. S., Embedding homological properties of metabelian discrete groups: the general case . J. Group Theory 10(2007), no. 4, 505529. https://doi.org/10.1515/JGT.2007.041.
[19] Kochloukova, D. H. and Zalesskii, P., Homological invariants for pro-p groups and some finitely presented pro-C groups . Monatsh. Math. 144(2005), no. 4, 285296. https://doi.org/10.1007/s00605-004-0269-9.
[20] Pletch, A., Profinite duality groups II . J. Pure Appl. Algebra 16(1980), no. 1, 285297. https://doi.org/10.1016/0022-4049(80)90034-1.
[21] Remeslennikov, V. N., Imbedding theorems for profinite groups . Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), no. 2, 399417, 480.
[22] Ribes, L. and Zalesskii, P., Profinite groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, 40. Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/978-3-662-04097-3.
[23] Weibel, C. A., An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9781139644136.
[24] Wilson, J. S., Finite presentation of pro-p groups and discrete groups . Invent. Math. 105(1991), no. 1, 177183. https://doi.org/10.1007/BF01232262.
[25] Wilson, J. S., Profinite groups. London Mathematical Society Monographs. New Series, 19. The Clarendon Press, Oxford University Press, New York, 1998.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed