No CrossRef data available.
Published online by Cambridge University Press: 01 July 2020
In this paper, we are interested in obtaining large values of Dirichlet L-functions evaluated at zeros of a class of L-functions, that is, $$ \begin{align*}\max_{\substack{F(\rho)=0\\ T\leq \Im \rho \leq 2T}}L(\rho,\chi), \end{align*} $$where 
 $\chi $ is a primitive Dirichlet character and F belongs to a class of L-functions. The class we consider includes L-functions associated with automorphic representations of
$\chi $ is a primitive Dirichlet character and F belongs to a class of L-functions. The class we consider includes L-functions associated with automorphic representations of  $GL(n)$ over
$GL(n)$ over  ${\mathbb {Q}}$.
${\mathbb {Q}}$.
 $L$
-functions from the Selberg class
. J. Math. Anal. Appl. 446(2017), 345–364. https://doi.org/10.1016/j.jmaa.2016.08.044
CrossRefGoogle Scholar
$L$
-functions from the Selberg class
. J. Math. Anal. Appl. 446(2017), 345–364. https://doi.org/10.1016/j.jmaa.2016.08.044
CrossRefGoogle Scholar $\zeta (s)$
. 
III. Proc. Indian Acad. Sci. Sect. A 86(1977), 341–351.CrossRefGoogle Scholar
$\zeta (s)$
. 
III. Proc. Indian Acad. Sci. Sect. A 86(1977), 341–351.CrossRefGoogle Scholar $L$
-functions and the nonexistence of Siegel zeros on
$L$
-functions and the nonexistence of Siegel zeros on 
 $\mathrm{GL}(3)$
. Duke Math. J. 87(1997), 343–353. https://doi.org/10.1215/S0012-7094-97-08713-5
CrossRefGoogle Scholar
$\mathrm{GL}(3)$
. Duke Math. J. 87(1997), 343–353. https://doi.org/10.1215/S0012-7094-97-08713-5
CrossRefGoogle Scholar $L$
-functions
. Acta Arith. 83(1998), 271–281. https://doi.org/10.4064/aa-83-3-271-281
CrossRefGoogle Scholar
$L$
-functions
. Acta Arith. 83(1998), 271–281. https://doi.org/10.4064/aa-83-3-271-281
CrossRefGoogle Scholar ${\mathrm{GL}}_N$
 and narrow zero-free regions for Rankin-Selberg
${\mathrm{GL}}_N$
 and narrow zero-free regions for Rankin-Selberg 
 $L$
-functions
. Amer. J. Math. 128(2006), 1455–1474. http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.6brumley.pdf
CrossRefGoogle Scholar
$L$
-functions
. Amer. J. Math. 128(2006), 1455–1474. http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.6brumley.pdf
CrossRefGoogle Scholar $|\zeta \left(\frac{1}{2}+\mathrm{it}\right)|$
 on the Riemann hypothesis
. Bull. Lond. Math. Soc. 43(2011), 243–250. https://doi.org/10.1112/blms/bdq095
CrossRefGoogle Scholar
$|\zeta \left(\frac{1}{2}+\mathrm{it}\right)|$
 on the Riemann hypothesis
. Bull. Lond. Math. Soc. 43(2011), 243–250. https://doi.org/10.1112/blms/bdq095
CrossRefGoogle Scholar $L$
-functions
. J. Reine Angew. Math. 609(2007), 215–236. https://doi.org/10.1515/CRELLE.2007.064
Google Scholar
$L$
-functions
. J. Reine Angew. Math. 609(2007), 215–236. https://doi.org/10.1515/CRELLE.2007.064
Google Scholar $L$
-functions
. 
VII. Acta Arith. 29(1976), 59–68. https://doi.org/10.4064/aa-29-1-59-68
CrossRefGoogle Scholar
$L$
-functions
. 
VII. Acta Arith. 29(1976), 59–68. https://doi.org/10.4064/aa-29-1-59-68
CrossRefGoogle Scholar $L$
-function at nontrivial zeros of another Dirichlet
$L$
-function at nontrivial zeros of another Dirichlet 
 $L$
-function
. Int. J. Number Theory 9(2013), 945–963. https://doi.org/10.1142/S1793042113500085
CrossRefGoogle Scholar
$L$
-function
. Int. J. Number Theory 9(2013), 945–963. https://doi.org/10.1142/S1793042113500085
CrossRefGoogle Scholar $L$
-functions
. Pure Appl. Math. Q. 3(2007), 481–497. https://doi.org/10.4310/PAMQ.2007.v3.n2.a4
CrossRefGoogle Scholar
$L$
-functions
. Pure Appl. Math. Q. 3(2007), 481–497. https://doi.org/10.4310/PAMQ.2007.v3.n2.a4
CrossRefGoogle Scholar $GL(n)$
. In: Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., 66, Amer. Math. Soc., Providence, RI, 1999, pp. 301–310.CrossRefGoogle Scholar
$GL(n)$
. In: Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., 66, Amer. Math. Soc., Providence, RI, 1999, pp. 301–310.CrossRefGoogle Scholar ${\zeta}^{\prime}\left(\rho \right)$
. J. Lond. Math. Soc. (2) 78(2008), no. 2, 273–289. https://doi.org/10.1112/jlms/jdn022
CrossRefGoogle Scholar
${\zeta}^{\prime}\left(\rho \right)$
. J. Lond. Math. Soc. (2) 78(2008), no. 2, 273–289. https://doi.org/10.1112/jlms/jdn022
CrossRefGoogle Scholar $L$
-functions. Math. Res. Lett. 6(1999), no. 2, 155–167. https://doi.org/10.4310/MRL.1999.v6.n2.a4
CrossRefGoogle Scholar
$L$
-functions. Math. Res. Lett. 6(1999), no. 2, 155–167. https://doi.org/10.4310/MRL.1999.v6.n2.a4
CrossRefGoogle Scholar $L$
-functions
. Math. Ann. 342(2008), 467–486. https://doi.org/10.1007/s00208-008-0243-2
CrossRefGoogle Scholar
$L$
-functions
. Math. Ann. 342(2008), 467–486. https://doi.org/10.1007/s00208-008-0243-2
CrossRefGoogle Scholar $L$
-functions. Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.Google Scholar
$L$
-functions. Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.Google Scholar