Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T08:24:45.080Z Has data issue: false hasContentIssue false

Mixed Perverse Sheaves on Flag Varieties for Coxeter Groups

Published online by Cambridge University Press:  09 January 2019

Pramod N. Achar
Affiliation:
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA Email: pramod@math.lsu.edu
Simon Riche
Affiliation:
Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France Email: simon.riche@uca.fr
Cristian Vay
Affiliation:
Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, CIEM–CONICET, Córdoba, Argentina Email: vay@famaf.unc.edu.ar

Abstract

In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author P.A. was partially supported by NSF Grant No. DMS-1500890. Author S.R. was partially supported by ANR Grant No. ANR-13-BS01-0001-01. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 677147). The work of Author C.V. was done during a research stay at the Université Clermont Auvergne supported by CONICET. He also was partially supported by Secyt (UNC), FONCyT PICT 2016-3957 and MathAmSud project GR2HOPF.

References

Abe, N., The category  $\mathscr{O}$  for a general Coxeter system. J. Algebra 367(2012), 1–25. https://doi.org/10.1016/j.jalgebra.2012.06.002.Google Scholar
Achar, P., Makisumi, S., Williamson, G., and Riche, S., Free-monodromic mixed tilting sheaves on flag varieties. arxiv:1703.05843.Google Scholar
Achar, P., Makisumi, S., Riche, S., and Williamson, G., Koszul duality for Kac–Moody groups and characters of tilting modules . J. Amer. Math. Soc. 32(2019), 261310. https://doi.org/10.1090/jams/905.Google Scholar
Achar, P. and Riche, S., Modular perverse sheaves on flag varieties II: Koszul duality and formality . Duke Math. J. 165(2016), 161215. https://doi.org/10.1215/00127094-3165541.Google Scholar
Achar, P. and Riche, S., Reductive groups, the loop Grassmannian, and the Springer resolution . Invent. Math. 214(2018), 289436. https://doi.org/10.1007/s00222-018-0805-1.Google Scholar
Achar, P. and Rider, L., Parity sheaves on the affine Grassmannian and the Mirković–Vilonen conjecture . Acta Math. 215(2015), 183216. https://doi.org/10.1007/s11511-016-0132-6.Google Scholar
Achar, P. and Rider, L., The affine Grassmannian and the Springer resolution in positive characteristic . Compos. Math. 152(2016), 26272677. https://doi.org/10.1112/S0010437X16007661.Google Scholar
Beĭlinson, A., Bernstein, J., and Deligne, P., Faisceaux pervers. In: Analyse et topologie sur les espaces singuliers, I. Astérisque 100 (1982), 5–171.Google Scholar
Beĭlinson, A., Ginzburg, V., and Soergel, W., Koszul duality patterns in representation theory . J. Amer. Math. Soc. 9(1996), 473527. https://doi.org/10.1090/S0894-0347-96-00192-0.Google Scholar
Beĭlinson, A., Bezrukavnikov, R., and Mirković, I., Tilting exercises . Mosc. Math. J. 4(2004), 547557, 782.Google Scholar
Buch, A. and Mihalcea, L., Curve neighborhoods of Schubert varieties . J. Differential Geom. 99(2015), 255283. https://doi.org/10.4310/jdg/1421415563.Google Scholar
Elias, B. and Williamson, G., The Hodge theory of Soergel bimodules . Ann. of Math. (2) 180(2014), 10891136. https://doi.org/10.4007/annals.2014.180.3.6.Google Scholar
Elias, B. and Williamson, G., Soergel calculus . Represent. Theory 20(2016), 295374. https://doi.org/10.1090/ert/481.Google Scholar
Fiebig, P., The combinatorics of Coxeter categories . Trans. Amer. Math. Soc. 360(2008), 42114233. https://doi.org/10.1090/S0002-9947-08-04376-6.Google Scholar
Humphreys, J. E., Representations of semisimple Lie algebras in the BGG category ${\mathcal{O}}$ . Graduate Studies in Mathematics, 94. American Mathematical Society, Providence, RI, 2008. https://doi.org/10.1090/gsm/094.Google Scholar
Jensen, L. T. and Williamson, G., The $p$ -canonical basis for Hecke algebras. In: Categorification and higher representation theory. Contemp. Math., 683. American Mathematical Society, Providence, RI, 2017, pp. 333–361.Google Scholar
Juteau, D., Mautner, C., and Williamson, G., Parity sheaves . J. Amer. Math. Soc. 27(2014), 11691212. https://doi.org/10.1090/S0894-0347-2014-00804-3.Google Scholar
Kashiwara, M. and Schapira, P., Sheaves on manifolds . Grundlehren der Mathematischen Wissenschaften, 292. Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/978-3-662-02661-8.Google Scholar
Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras . Invent. Math. 53(1979), 165184. https://doi.org/10.1007/BF01390031.Google Scholar
Kazhdan, D. and Lusztig, G., Schubert varieties and Poincaré duality. In: Geometry of the Laplace operator. Proc. Sympos. Pure Math., XXXVI. American Mathematical Society, Providence, RI, 1980, pp. 185–203.Google Scholar
Krause, H., Localization theory for triangulated categories. In: Triangulated categories. London Math. Soc. Lecture Note Ser., 375. Cambridge University Press, 2010, pp. 161–235. https://doi.org/10.1017/CBO9781139107075.005.Google Scholar
Kumar, S., Kac–Moody groups, their flag varieties and representation theory. Progress in Mathematics, 204. Birkhäuser Boston, Boston, MA, 2002. https://doi.org/10.1007/978-1-4612-0105-2.Google Scholar
Le, J. and Chen, X.-W., Karoubianness of a triangulated category . J. Algebra 310(2007), 452457. https://doi.org/10.1016/j.jalgebra.2006.11.027.Google Scholar
Libedinsky, N., Light leaves and Lusztig’s conjecture . Adv. Math. 280(2015), 772807. https://doi.org/10.1016/j.aim.2015.04.022.Google Scholar
Libedinsky, N. and Williamson, G., Standard objects in 2-braid groups . Proc. Lond. Math. Soc. (3) 109(2014), 12641280. https://doi.org/10.1112/plms/pdu022.Google Scholar
Matsumura, H., Commutative ring theory . Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, 1986.Google Scholar
Mautner, C. and Riche, S., Exotic tilting sheaves, parity sheaves on affine Grassmannians, and the Mirković–Vilonen conjecture . J. Eur. Math. Soc. 20(2018), 22592332. https://doi.org/10.1090/S0894-0347-2014-00804-3.Google Scholar
Makisumi, S., Mixed modular perverse sheaves on moment graphs. arxiv:1703.01571.Google Scholar
Mirković, I. and Riche, S., Linear Koszul duality II: coherent sheaves on perfect sheaves . J. London Math. Soc. 93(2016), 124. https://doi.org/10.1112/jlms/jdv053.Google Scholar
Neeman, A., Triangulated categories . Annals of Mathematics Studies, 148. Princeton University Press, Princeton, NJ, 2001. https://doi.org/10.1515/9781400837212.Google Scholar
Riche, S., Geometric representation theory in positive characteristic. Habilitation thesis, https://tel.archives-ouvertes.fr/tel-01431526.Google Scholar
Riche, S., La théorie de Hodge des bimodules de Soergel. Séminaire Bourbaki, Exp. 1139, arxiv:1711.02464.Google Scholar
Riche, S. and Williamson, G., Tilting modules and the p-canonical basis . Astérisque 2018, no. 397.Google Scholar
Rose, D., A note on the Grothendieck group of an additive category . Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform. 2015, no. 3 (17), 135139.Google Scholar
Rouquier, R., Categorification of $\mathfrak{s}\mathfrak{l}_{2}$ and braid groups. In: Trends in representation theory of algebras and related topics. Contemp. Math., 406. American Mathematical Society, Providence, RI, 2006, pp. 137–167. https://doi.org/10.1090/conm/406/07657.Google Scholar
Soergel, W., Gradings on representation categories. In: Proceedings of the International Congress of Mathematicians, 2. Birkhäuser, Basel, 1995, pp. 800–806.Google Scholar
Soergel, W., Kazhdan–Lusztig polynomials and a combinatoric[s] for tilting modules . Represent. Theory 1(1997), 83114. https://doi.org/10.1090/S1088-4165-97-00021-6.Google Scholar
Soergel, W., Kazhdan–Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen . J. Inst. Math. Jussieu 6(2007), 501525. https://doi.org/10.1017/S1474748007000023.Google Scholar
Springer, T. A., Quelques applications de la cohomologie d’intersection. In: Astérisque (1982), no. 92–93, Exp. 589, 249–273.Google Scholar
Thomason, R. W., The classification of triangulated subcategories . Compositio Math. 105(1997), 127. https://doi.org/10.1023/A:1017932514274.Google Scholar
Tits, J., Groupes associés aux algèbres de Kac–Moody. In: Astérisque (1989), no. 177–178 Exp. 700, 7–31.Google Scholar
Williamson, G., Singular Soergel bimodules . Int. Math. Res. Not. IMRN 2011, no. 20, 45554632. https://doi.org/10.1093/imrn/rnq263.Google Scholar