Skip to main content Accessibility help
×
Home

Motion in a Symmetric Potential on the Hyperbolic Plane

  • Manuele Santoprete (a1), Jürgen Scheurle (a2) and Sebastian Walcher (a3)

Abstract

We study the motion of a particle in the hyperbolic plane (embedded in Minkowski space), under the action of a potential that depends only on one variable. This problem is analogous to the spherical pendulum in a unidirectional force field. However, for the discussion of the hyperbolic plane one has to distinguish three inequivalent cases, depending on the direction of the force field. Symmetry reduction, with respect to groups that are not necessarily compact or even reductive, is carried out by way of Poisson varieties and Hilbert maps. For each case the dynamics is discussed, with special attention to linear potentials.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Motion in a Symmetric Potential on the Hyperbolic Plane
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Motion in a Symmetric Potential on the Hyperbolic Plane
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Motion in a Symmetric Potential on the Hyperbolic Plane
      Available formats
      ×

Copyright

References

Hide All
[1] Bates, L., A smooth invariant not a smooth function of the invariant polynomials. Proc. Amer. Math. Soc. 135(2007), 30393040. http://dx.doi.org/10.1090/S0002-9939-07-08797-7
[2] Birkes, D., Orbits of linear algebraic groups. Ann. Math. 93(1971), 459475.http://dx.doi.org/10.2307/1970884
[3] Cushman, R. and Bates, L., Global Aspects of Classical Integrable Systems. Birkhäuser, Basel, 1997.
[4] Dillen, F. and Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space. Manuscripta Math. 98(1999), 307320. http://dx.doi.org/10.1007/s002290050142
[5] Greuel, G.-M. and Pfister, G., A Singular 3-1-0 library for computing the ring of invariants of the additive groups. ainvar.lib, 2009.
[6] Greuel, G.-M., Pfister, G., and Schönemann, H., Singular 3–1–0—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2009.
[7] Gröbner, W. and Knapp, H. Contributions to the method of Lie series. Bibliographisches Institut, Mannheim, 1967.
[8] Grosshans, F. D., The invariants of unipotent radicals of parabolic subgroups. Invent. Math. 73(1983), 19. http://dx.doi.org/10.1007/BF01393822
[9] Grosshans, F. D., Scheurle, J., and Walcher, S., Invariant sets forced by symmetry. J. Geom. Mechanics 4(2012), 271296. http://dx.doi.org/10.3934/jgm.2012.4.271
[10] Grunewald, F. and Margulis, G., Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure. J. Geom. Phys. 5(1988), 493531.http://dx.doi.org/10.1016/0393-0440(88)90017-4
[11] Haboush, W. J., Reductive groups are geometrically reductive. Ann. of Math. (2) 102(1975), 6783.http://dx.doi.org/10.2307/1970974
[12] Hadžiev, D., Certain questions of the theory of vector invariants. (Russian) Mat. Sb. (N.S.) 72 (114)(1967), 420435.
[13] Humphreys, J. E., Linear Algebraic Groups. Springer, New York, 1975.
[14] Kunz, E., Introduction to commutative algebra and algebraic geometry. Birkhäuser, Boston, MA, 1985.
[15] Luna, D., Fonctions differentiables invariantes sous l’operation d’un groupe reductif. Ann. Inst. Fourier (Grenoble) 26(1976), 3349.
[16] Luna, D., Sur les orbites fermées des groupes algébriques reductifs. Invent. Math. 16(1972), 15.http://dx.doi.org/10.1007/BF01391210
[17] Panyushev, D. I., On covariants of reductive algebraic groups. Indag. Math., N.S. 13(2002), 125129.http://dx.doi.org/10.1016/S0019-3577(02)90010-8
[18] Procesi, C. and Schwarz, G., Inequalities defining orbit spaces. Invent. Math. 81(1985), 539554.http://dx.doi.org/10.1007/BF01388587
[19] Hano, J. and Nomizu, K., On isometric immersions of the hyperbolic plane into the Lorentz–Minkovski space and the Monge–Ampère equation of certain type. Math. Ann. 262(1983), 245253.http://dx.doi.org/10.1007/BF01455315
[20] Schwarz, G. W., Smooth functions invariant under the action of a compact Lie group. Topology 14(1975), 6368. http://dx.doi.org/10.1016/0040-9383(75)90036-1
[21] Springer, T. A., Invariant theory. Lecture Notes in Math. 585, Springer–Verlag, Berlin–New York, 1977.
[22] Vinberg, E. B. and Popov, V. L., A certain class of quasihomogeneous affine varieties. (Russian) Izv. Akad. Nauk. SSSR Ser. Mat. 36(1972), 749764.
[23] Walcher, S., On differential equations in normal form. Math. Ann. 291(1991), 293314.http://dx.doi.org/10.1007/BF01445209
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Motion in a Symmetric Potential on the Hyperbolic Plane

  • Manuele Santoprete (a1), Jürgen Scheurle (a2) and Sebastian Walcher (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.