Skip to main content
×
×
Home

On the Weak Order of Coxeter Groups

  • Matthew Dyer (a1)
Abstract

This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).

Copyright
References
Hide All
[1] Björner, Anders and Brenti, Francesco, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
[2] Björner, Anders, Edelman, Paul H., and Ziegler, Günter M., Hyperplane arrangements with a lattice of regions . Discrete Comput. Geom. 5(1990), no. 3, 263288. https://doi.org/10.1007/BF02187790.
[3] Björner, Anders, Las Vergnas, Michel, Sturmfels, Bernd, White, Neil, and Ziegler, Günter M., Oriented matroids. Encyclopedia of Mathematics and its Applications, 46. Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511586507.
[4] Bourbaki, N., Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, 1337. Hermann, Paris, 1968.
[5] Brink, Brigitte, On centralizers of reflections in Coxeter groups . Bull. London Math. Soc. 28(1996), no. 5, 465470. https://doi.org/10.1112/blms/28.5.465.
[6] Brink, Brigitte and Howlett, Robert B., Normalizers of parabolic subgroups in Coxeter groups . Invent. Math. 136(1999), no. 2, 323351. https://doi.org/10.1007/s002220050312.
[7] Büchi, J. Richard and Fenton, William E., Large convex sets in oriented matroids . J. Combin. Theory Ser. B 45(1988), no. 3, 293304. https://doi.org/10.1016/0095-8956(88)90074-3.
[8] Cuntz, M. and Heckenberger, I., Weyl groupoids with at most three objects . J. Pure Appl. Algebra 213(2009), no. 6, 11121128. https://doi.org/10.1016/j.jpaa.2008.11.009.
[9] Davey, B. A. and Priestley, H. A., Introduction to lattices and order. Second edition. Cambridge University Press, New York, 2002. https://doi.org/10.1017/CBO9780511809088.
[10] Ðoković, D. Ž., Check, P., and Hée, J.-Y., On closed subsets of root systems . Canad. Math. Bull. 37(1994), no. 3, 338345. https://doi.org/10.4153/CMB-1994-050-4.
[11] Dyer, M. J., Reflection subgroups of Coxeter systems . J. Algebra 135(1990), no. 1, 5773. https://doi.org/10.1016/0021-8693(90)90149-I.
[12] Dyer, M. J., On the “Bruhat graph” of a Coxeter system . Compositio Math. 78(1991), no. 2, 185191.
[13] Dyer, M. J., Hecke algebras and shellings of Bruhat intervals. II. Twisted Bruhat orders . In: Kazhdan-Lusztig theory and related topics. Contemp. Math., 139. American Mathematical Society, Providence, RI, 1992, pp. 141165. https://doi.org/10.1090/conm/139/1197833.
[14] Dyer, M. J., Hecke algebras and shellings of Bruhat intervals . Compositio Math. 89(1993), no. 1, 91115.
[15] Dyer, M. J., Bruhat intervals, polyhedral cones and Kazhdan-Lusztig-Stanley polynomials . Math. Z. 215(1994), no. 2, 223236. 1994. https://doi.org/10.1007/BF02571712.
[16] Dyer, M. J., Quotients of twisted Bruhat orders . J. Algebra 163(1994), no. 3, 861879. https://doi.org/10.1006/jabr.1994.1049.
[17] Dyer, M. J., On rigidity of abstract root systems of Coxeter groups. arxiv:1011.2270[math.GR] 2010.
[18] Dyer, Matthew and Bonnafé, Cedric, Semidirect product decompositions of Coxeter groups . Comm. Algebra 38(2010), no. 4, 15491574. https://doi.org/10.1080/00927870902980354.
[19] Edelman, Paul H., Meet-distributive lattices and the anti-exchange closure . Algebra Universalis 10(1980), no. 3, 290299. https://doi.org/10.1007/BF02482912.
[20] Edgar, Tom, Sets of reflections defining twisted Bruhat orders . J. Algebraic Combin. 26(2007), no. 3, 357362. https://doi.org/10.1007/s10801-007-0060-9.
[21] Heckenberger, I. and Welker, W., Geometric combinatorics of Weyl groupoids. arxiv:1003.3231[math.QA], 2010.
[22] Heckenberger, István and Yamane, Hiroyuki, A generalization of Coxeter groups, root systems, and Matsumoto’s theorem . Math. Z. 259(2008), no. 2, 255276. https://doi.org/10.1007/s00209-007-0223-3.
[23] Humphreys, James E., Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511623646.
[24] MacLane, Saunders, Categories for the working mathematician. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998.
[25] Malyšev, F. M., Decomposition of root systems . Mat. Zametki 27(1980), no. 6, 869876.
[26] Pilkington, Annette, Convex geometries on root systems . Comm. Algebra 34(2006), no. 9, 31833202. https://doi.org/10.1080/00927870600778340.
[27] Wang, Weijia, Closure operator and lattice property of root systems. Ph.D. thesis, University of Notre Dame, 2017.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed