Published online by Cambridge University Press: 20 November 2018
Let   $P\in \mathbb{Z}\left[ n \right]$  with
 $P\in \mathbb{Z}\left[ n \right]$  with   $P(0)\,=\,0\,\text{and}\,\varepsilon \,>\,0$ . We show, using Fourier analytic techniques, that if
 $P(0)\,=\,0\,\text{and}\,\varepsilon \,>\,0$ . We show, using Fourier analytic techniques, that if   $N\ge \exp \exp \left( C{{\varepsilon }^{-1}}\log {{\varepsilon }^{-1}} \right)\,\text{and}\,A\,\subseteq \,\left\{ 1,\,.\,.\,.\,,\,N \right\}$  then there must exist
 $N\ge \exp \exp \left( C{{\varepsilon }^{-1}}\log {{\varepsilon }^{-1}} \right)\,\text{and}\,A\,\subseteq \,\left\{ 1,\,.\,.\,.\,,\,N \right\}$  then there must exist   $n\in \mathbb{N}$  such that
 $n\in \mathbb{N}$  such that
  $$\frac{\left| A\cap \left( A+P\left( n \right) \right) \right|}{N}>{{\left( \frac{\left| A \right|}{N} \right)}^{2}}-\,\varepsilon $$
 $$\frac{\left| A\cap \left( A+P\left( n \right) \right) \right|}{N}>{{\left( \frac{\left| A \right|}{N} \right)}^{2}}-\,\varepsilon $$
In addition to this we show, using the same Fourier analytic methods, that if   $A\subseteq \mathbb{N}$ , then the setof
 $A\subseteq \mathbb{N}$ , then the setof   $\varepsilon $ -optimal return times
 $\varepsilon $ -optimal return times
  $$R\left( A,P,\varepsilon\right)=\left\{ n\in \mathbb{N}:\delta \left( A\cap \left. \left( A+P\left( n \right) \right) \right)> \right.\delta {{\left( A \right)}^{2}}-\varepsilon\right\}$$
 $$R\left( A,P,\varepsilon\right)=\left\{ n\in \mathbb{N}:\delta \left( A\cap \left. \left( A+P\left( n \right) \right) \right)> \right.\delta {{\left( A \right)}^{2}}-\varepsilon\right\}$$
is syndetic for every   $\varepsilon >0$ . Moreover, we show that
 $\varepsilon >0$ . Moreover, we show that   $R\left( A,\,P,\,\varepsilon\right)$  is dense in every sufficiently long interval, in particular we show that there exists an
 $R\left( A,\,P,\,\varepsilon\right)$  is dense in every sufficiently long interval, in particular we show that there exists an   $L=L\left( \varepsilon ,P,A \right)$  such that
 $L=L\left( \varepsilon ,P,A \right)$  such that
  $$\left| R\left( A,P,\varepsilon\right)\cap I \right|\ge c\left( \varepsilon ,P \right)\left| I \right|$$
 $$\left| R\left( A,P,\varepsilon\right)\cap I \right|\ge c\left( \varepsilon ,P \right)\left| I \right|$$
for all intervals   $I$  of natural numbers with
 $I$  of natural numbers with   $\left| I \right|\,\ge \,L\,\text{and}\,c\left( \varepsilon ,\,P \right)\,=\,\exp \exp \,\left( -C\,{{\varepsilon }^{-1}}\,\log {{\varepsilon }^{-1}} \right).$
 $\left| I \right|\,\ge \,L\,\text{and}\,c\left( \varepsilon ,\,P \right)\,=\,\exp \exp \,\left( -C\,{{\varepsilon }^{-1}}\,\log {{\varepsilon }^{-1}} \right).$