Hostname: page-component-65b85459fc-qgpsj Total loading time: 0 Render date: 2025-10-19T08:02:45.764Z Has data issue: false hasContentIssue false

Petty projection inequality on the sphere and on the hyperbolic space

Published online by Cambridge University Press:  28 August 2025

Youjiang Lin
Affiliation:
School of Mathematical Sciences, Hebei Normal University , Shijiazhuang 050024, China Dipartimento di Matematica e Informatica “U. Dini”, Universitá di Firenze , Firenze 50121, Italy e-mail: youjiang.lin@unifi.it; yjlin@hebtu.edu.cn
Yuchi Wu*
Affiliation:
School of Mathematical Sciences, Key Laboratory of MEA(Ministry of Education), and Shanghai Key Laboratory of PMMP, East China Normal University , Shanghai 200241, China

Abstract

We define a spherical and hyperbolic analog to the Euclidean projection body for star bodies via the gnomonic projection from the unit sphere and stereographic projection in the hyperbolid model of hyperbolic space. We then prove a spherical and hyperbolic projection inequality for these notions by using an adaption of Steiner symmetrization for spherical, respectively, hyperbolic, star bodies.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Research of the first author is supported by NSFC 11971080, NSFC 12371137, Hebei Normal University Doctoral Research Start-up Fund L2025B50 and Jiangxi Provincial Natural Science Foundation 20232BAB201005. Research of the second author (corresponding author) is supported by Science and Technology Commission of Shanghai Municipality 22DZ2229014 and Youth Fund of the National Natural Science Foundation of China NSFC 12401067.

References

Artstein-Avidan, S., Giannopoulos, A., and Milman, V. D., Asymptotic geometric analysis, part I, Mathematical Surveys and Monographs, 202, American Mathematical Society, Providence, RI, 2015.Google Scholar
Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality . Ann. Math. 138(1993), 213242.Google Scholar
Besau, F., Hack, T., Pivovarov, P., and Schuster, F. E., Spherical centroid bodies . Am. J. Math. 145(2023), 127.Google Scholar
Besau, F. and Werner, E. M., The spherical convex floating body . Adv. Math. 301(2016), 867901.Google Scholar
Besau, F. and Werner, E. M., The floating body in real space forms . J. Differ. Geom. 110(2018), 187220.Google Scholar
Bianchi, G., Gardner, R. J., and Gronchi, P., Symmetrization in geometry . Adv. Math. 306(2017), 5188.Google Scholar
Bögelein, V., Duzaar, F., and Fusco, N., A quantitative isoperimetric inequality on the sphere . Adv. Calc. Var. 10(2016), 223265.Google Scholar
Böröczky, K. J. and Sagmeister, Á., The isodiametric problem on the sphere and in the hyperbolic space . Acta Math. Hungar. 160(2020), 1332.Google Scholar
Chlebík, M., Cianchi, A., and Fusco, N., The perimeter inequality under Steiner symmetrization: Cases of equality . Ann. Math. 162(2005), 525555.Google Scholar
Cianchi, A. and Fusco, N., Steiner symmetric extremals in Pólya-Szegő type inequalities . Adv. Math. 203(2006), 673728.Google Scholar
Cianchi, A., Lutwak, E., Yang, D., and Zhang, G., Affine Moser-Trudinger and Morrey-Sobolev inequalities . Calc. Var. 36(2009), 419436.Google Scholar
Dann, S., Kim, J., and Yaskin, V., Busemann’s intersection inequality in hyperbolic and spherical spaces . Adv. Math. 326(2018), 521560.Google Scholar
Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions. Revised Edition, CRC Press, Boca Raton, FL, 2015.Google Scholar
Gao, F., Hug, D., and Schneider, R., Intrinsic volumes and polar sets in spherical space . Math. Notae 41(2003), 159176.Google Scholar
Gardner, R. J., Geometric tomography, volume 58 of Encyclopedia of mathematics and its applications. 2nd ed., Cambridge University Press, New York, NY, 2006.Google Scholar
Gromov, M. and Milman, V. D., Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces . Compos. Math. 62(1987), 263282.Google Scholar
Gruber, P. M., Convex and discrete geometry, volume 336 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Berlin, 2007.Google Scholar
Haberl, C. and Schuster, F., Affine vs. Euclidean isoperimetric inequalities . Adv. Math. 356(2019), 106811, 26 pp.Google Scholar
Hack, T. and Pivovarov, P., Randomized Urysohn-type inequalities . Mathematika 67(2021), 100115.Google Scholar
Lin, Y., Affine Orlicz Pólya-Szegő principle for log-concave functions . J. Funct. Anal. 273(2017), no. 10, 32953326.Google Scholar
Lin, Y., The petty projection inequality for sets of finite perimeter . Calc. Var. 60(2021), no. 5, Article no.196, 18 pp.Google Scholar
Lin, Y. and Wu, Y., Lipschitz star bodies . Acta Math. Sci. Ser. B (Engl. Ed.) 43(2023), no. 2, 597607.Google Scholar
Lin, Y. and Xi, D., Orlicz affine isoperimetric inequalities for star bodies . Adv. Appl. Math. 134(2022), 102308.Google Scholar
Ludwig, M., Projection bodies and valuations . Adv. Math. 172(2002), 158168.Google Scholar
Lutwak, E., A general isepiphanic inequality . Proc. Am. Math. Soc. 90(1984), 415421.Google Scholar
Lutwak, E., On some affine isoperimetric inequalities . J. Differ. Geom. 23(1986), 113.Google Scholar
Lutwak, E., Yang, D., and Zhang, G., ${L}_p$ affine isoperimetric inequalities . J. Differ. Geom. 56(2000), 111132.Google Scholar
Lutwak, E., Yang, D., and Zhang, G., Sharp affine ${L}_p$ Sobolev inequalities . J. Differ. Geom. 62(2002), 1738.Google Scholar
Lutwak, E., Yang, D., and Zhang, G., Orlicz projection bodies . Adv. Math. 223(2010), no. 1, 220242.Google Scholar
Maehara, H. and Martini, H., Circles, spheres and spherical geometry. Birkhäuser, Cham, 2024.Google Scholar
Makowski, M., Mixed volume preserving curvature flows in hyperbolic space. Preprint, arXiv:1208.1898.Google Scholar
Ratcliffe, J. G., Foundations of hyperbolic manifolds. Springer, New York, NY, 1994.Google Scholar
Schneider, R., Convex bodies: The Brunn-Minkowski theory. 2nd ed., Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2014.Google Scholar
Schneider, R. and Weil, W., Stochastic and integral geometry, probability and its applications (New York). Springer-Verlag, Berlin, 2008.Google Scholar
Wang, G. and Xia, C., Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space . Adv. Math. 259(2014), 532556.Google Scholar
Yaskin, V., The Busemann-Petty problem in hyperbolic and spherical spaces . Adv. Math. 203(2006), no. 2, 537553.Google Scholar
Zhang, G., Restricted chord projection and affine inequalities . Geom. Dedicata 39(1991), no. 2, 213222.Google Scholar
Zhang, G., The affine Sobolev inequality . J. Differ. Geom. 53(1999), 183202.Google Scholar
Zhu, G., The Orlicz centroid inequality for star bodies . Adv. Appl. Math. 48(2012), 432445.Google Scholar