Skip to main content Accessibility help
×
Home

Projective Modules over Higher-Dimensional Non-Commutative Tori

  • Marc A. Rieffel (a1)

Extract

The non-commutative tori provide probably the most accessible interesting examples of non-commutative differentiable manifolds. We can identify an ordinary n-torus Tn with its algebra, C(Tn), of continuous complex-valued functions under pointwise multiplication. But C(Tn) is the universal C*-algebra generated by n commuting unitary operators. By definition, [15, 16, 50], a non-commutative n-torus is the universal C*-algebra generated by n unitary operators which, while they need not commute, have as multiplicative commutators various fixed scalar multiples of the identity operator. As Connes has shown [8, 10], these algebras have a natural differentiable structure, defined by a natural ergodic action of Tn as a group of automorphisms. The non-commutative tori behave in inany ways like ordinary tori. For instance, it is an almost immediate consequence of the work of Pimsner and Voiculescu [37] that the K-groups of a non-commutative torus are the same as those of an ordinary torus of the same dimension. (In particular, non-commutative tori are KK-equivalent to ordinary tori by Corollary 7.5 of [52].) Furthermore, the structure constants of non-commutative tori can be continuously deformed into those for ordinary tori. (This is exploited in [17].)

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Projective Modules over Higher-Dimensional Non-Commutative Tori
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Projective Modules over Higher-Dimensional Non-Commutative Tori
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Projective Modules over Higher-Dimensional Non-Commutative Tori
      Available formats
      ×

Copyright

References

Hide All
1. Anderson, J. and Paschke, W., The rotation algebra, preprint.
2. Barnes, B. A., The role of minimal idempotents in the representation theory of locally compact groups, Proc. Edinburgh Math. Soc. 23 (1980), 229238.
3. Bellissard, J., Lima, R. and Testard, D., Almost periodic Schrodinger operators, Mathematics + Physics, Lectures on Recent Results 1, (World Scientific, Singapore/Philadelphia, 1985), 164.
4. Blackadar, B., Notes on the structure of projections in simple C*-algebras, Semesterbericht Functionalanalysis, Tubingen, Wintersemester (1982/1983).
5. Bourbaki, N., Algèbre multilineaire, elements de mathématique (Hermann, Paris, 1958).
6. Bratteli, O., Elliott, G. A. and Jorgensen, P. E. T., Decomposition of unbounded derivations into invariant and approximately inner parts, J. reine ang. Math. 346 (1984), 166193.
7. Bruhat, F., Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes p-adiques, Bull. Soc. Math. France 89 (1961), 4375.
8. Connes, A., C*-algèbres et géométrie différentielle, C. R. Acad. Se. Paris 290 (1980), 599604.
9. Connes, A., An analogue of the Thorn isomorphism for crossed products of a C*-algebra by an action of R, Adv. Math. 39 (1981), 3155.
10. Connes, A., A survey of foliations and operator algebras, in Operator algebras and applications, Proc. Symp. Pure Math. 38 (Amer. Math. Soc, Providence, 1982), 521628.
11. Connes, A., The Chern character in K homology, Publ. Math. I.H.E.S. 62 (1986), 4193.
12. Connes, A., De Rham homology and non commutative algebra, Publ. Math. I.H.E.S. 62 (1986), 94144.
13. Connes, A. and Rieffel, M. A., Yang-Mills for non-commutative two-tori, Proceedings of Conf. on Operator Algebras and Mathematical Physics, University of Iowa (1985), Contemporary Math. 62 (1987), 237266.
14. Connes, A. and Takesaki, M., The flow of weights on factors of type III, Tôhoku Math. J. 29 (1977), 473575.
15. Cuntz, J., Elliott, G. A., Goodman, F. M. and Jorgensen, P. E. T., On the classification of noncommutative tori, II, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 189194.
16. Disney, S., Elliott, G. A., Kumjian, A. and Raeburn, I., On the classification of noncommutative tori, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), 137141.
17. Elliott, G. A., On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group, in Operator algebras and group representations 1 (Pitman, London, 1984), 157184.
18. Green, P., The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191250.
19. Elliott, G. A., Square-integrable representations and the dual topology, J. Funct. Anal. 35 (1980), 279294.
20. Greub, W., Halperin, S. and Vanstone, R., Connections, curvature, and cohomology, Vol. II (Academic Press, New York, 1973).
21. Herman, R. H. and Vaserstein, L. N., The stable range of C* -algebras, Invent. Math. 77 (1984), 553555.
22. Hewitt, E. and Ross, K. A., Abstract harmonic analysis, I (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963).
23. Husemoller, D., Fibre bundles (Springer-Verlag, New York-Heidelberg-Berlin, 1966).
24. Igusa, J., Theta functions (Springer-Verlag, Berlin-Heidelberg-New York, 1972).
25. Kleppner, A., Multipliers on Abelian groups, Math. Ann. 158 (1965), 1134.
26. Kumjian, A., On localizations and simple C*-algebras, Pacific J. Math. 112 (1984), 141192.
27. Lang, S., Algebra (Addison-Wesley, Reading, Mass., 1965).
28. Loomis, L. H., An introduction to abstract harmonic analysis (Van Nostrand, New York, 1953).
29. Mackey, G. W., Unitary representations of group extensions, I, Acta Math. 99 (1958), 265311.
30. Menai, P. and Moncasi, J., On regular rings with stable range 2, J. Pure Appl. Algebra 24 (1982), 2540.
31. Olesen, D., Pedersen, G. K. and Takesaki, M., Ergodic actions of compact Abelian groups, J. Operator Theory 3 (1980), 237269.
32. Ozeki, H., Chern classes of projective modules, Nagoya Math. J. 23 (1963), 121152.
33. Packer, J. A., K-theoretic invariants for C*-algebras associated to transformations and induced flows, J. Funct. Anal. 67 (1986), 2559.
34. Packer, J. A., C*-algebras generated by projective representations of the discrete Heisenberg group, I, II, preprints.
35. Pedersen, G. K., C*-algebras and their automorphism groups, London Math. Soc. Monographs 14 (Academic Press, London, 1979).
36. Pimsner, M. V., Range of traces on K0 of reduced crossed products by free groups, Proc. Conf. on Operator Algebras, Connections with Topology and Ergodic Theory, Lecture Notes Math. 1132 (Springer-Verlag, Berlin-Heidelberg, 1985), 374408.
37. Pimsner, M. V. and Voiculescu, D., Exact sequences for K-groups and Ext-groups of certain crossed product C* -algebras, J. Operator Theory 4 (1980), 93118.
38. Poguntke, D., Simple quotients of group C*-algebras for two step nilpotent groups and connected Lie groups, Ann. Sci. Ec. Norm. Sup. 16 (1983), 151172.
39. Riedel, N., Classification of the C*-algebras associated with minimal rotations, Pacific J. Math. 101 (1982), 153161.
40. Riedel, N., On the topological stable rank of irrational rotation algebras, J. Operator Theory 13 (1985), 143150.
41. Rieffel, M. A., On the uniqueness of the Heisenberg commutation relations, Duke Math. J. 39 (1972), 745752.
42. Rieffel, M. A., Induced representations of C*-algebras, Adv. Math. 13 (1974), 176257.
43. Rieffel, M. A., Commutation theorems and generalized commutation relations, Bull. Soc. Math. France 104 (1976), 205224.
44. Rieffel, M. A., Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, Studies in Analysis, Adv. Math. Suppl. Series 4 (1979), 4382.
45. Rieffel, M. A., Morita equivalence for operator algebras, in Operator algebras and applications, Proc. Symp. Pure Math. 38 (Amer. Math. Soc, Providence, 1982), 285298.
46. Rieffel, M. A., C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415429.
47. Rieffel, M. A., Von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann. 257(1981), 403418.
48. Rieffel, M. A., Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46(1983), 301333.
49. Rieffel, M. A., The cancellation theorem for projective modules over irrational rotation C*-algebras, Proc. London Math. Soc. 47 (1983), 285302.
50. Rieffel, M. A., “Vector bundles” over higher dimensional “non-commutative tori”, Proc. Conf. on Operator Algebras, Connections with Topology and Ergodic Theory, Lecture Notes Math. 1132 (Springer-Verlag, Berlin-Heidelberg, 1985), 456467.
51. Rieffel, M. A., K-theory of crossed products of C*-algebras by discrete groups, Proc. 1984 Conf. on Group Actions on Rings, Contemporary Math. 43 (1985), 253265.
52. Rosenberg, J. and Schochet, C., The Kunneth and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987), 431474.
53. Sheu, A. J.-L., The cancellation property for modules over the group C*-algebras of certain nilpotent Lie groups, doctoral dissertation, University of California, Berkeley (1985).
54. Swan, R., Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264277.
55. Taylor, J. L., Banach algebras and topology, in Algebras in analysis (Academic Press, New York, 1975), 118186.
56. Valette, A., Minimal projections, integrable representations and property (T), Arch. Math. (Basel) 43 (1984), 397406.
57. Warfield, R. B., Cancellation of modules and groups and stable range of endomorphism rings, Pacific J. Math. 91 (1980), 457485.
58. Weil, A., Sur certains groupes d'opérateurs unitaires, Acta Math. Ill (1964), 14321 1.
59. Weyl, H., Uber die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313352.
60. Zeller-Meier, G., Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math, pures appl. 47 (1968), 101239.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Projective Modules over Higher-Dimensional Non-Commutative Tori

  • Marc A. Rieffel (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed