Hostname: page-component-68c7f8b79f-7wx25 Total loading time: 0 Render date: 2025-12-24T06:13:56.642Z Has data issue: false hasContentIssue false

Reducible Riemannian manifolds with conformal product structures

Published online by Cambridge University Press:  24 November 2025

Andrei Moroianu*
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France, and Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea Grivitei, 010702 Bucharest, Romania
Mihaela Pilca
Affiliation:
Mihaela Pilca, Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31 D-93040 Regensburg, Germany, and Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21 Calea Grivitei, 010702 Bucharest, Romania e-mail: mihaela.pilca@mathematik.uni-regensburg.de

Abstract

We study conformal product structures on compact reducible Riemannian manifolds, and show that under a suitable technical assumption, the underlying Riemannian manifolds are either conformally flat or local triple products, i.e., locally isometric to Riemannian manifolds of the form $(M,g)$ with $M=M_1\times M_2\times M_3$ and $g=e^{2f}g_1+g_2+g_3$, where $g_i$ is a Riemannian metric on $M_i$, for $i\in \{1,2,3\}$, and $f\in C^\infty (M_1\times M_2)$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work was partly supported by the PNRR-III-C9-2023-I8 grant CF 149/31.07.2023 Conformal Aspects of Geometry and Dynamics.

References

Belgun, F., Flamencourt, B., and Moroianu, A., Weyl structures with special holonomy on compact conformal manifolds . Doc. Math. (2025). https://doi.org/10.4171/DM/1033 Google Scholar
Belgun, F. and Moroianu, A., Weyl-parallel forms, conformal products and Einstein-Weyl manifolds . Asian J. Math. 15(2011), 499520.Google Scholar
Belgun, F. and Moroianu, A., On the irreducibility of locally metric connections . J. Reine Angew. Math. 714(2016), 123150.Google Scholar
Calderbank, D. M. J., Selfdual Einstein metrics and conformal submersions. Preprint, 2000. arXiv:math/0001041v1.Google Scholar
Flamencourt, B., Locally conformally product structures . Int. J. Math. 35(2024), no. 5, 2450013.Google Scholar
Flamencourt, B. and Zeghib, A., On foliations admitting a transverse similarity structure. Preprint, 2025. arXiv:2501.04814.Google Scholar
Fried, D., Closed similarity manifolds . Comment. Math. Helv. 55(1980), no. 4, 576582.Google Scholar
Gauduchon, P., Structures de Weyl-Einstein, espaces de twisteurs et variétés de type ${S}^1\times {S}^3$ . J. Reine Angew. Math. 469(1995), 150 Google Scholar
Kourganoff, M., Similarity structures and de Rham decomposition . Math. Ann. 373(2019), 10751101.Google Scholar
Kühnel, W. and Rademacher, H.-B., Conformal vector fields on pseudo-Riemannian spaces . Differ. Geom. Appl. 7(1997), 237250.Google Scholar
Kühnel, W. and Rademacher, H.-B., Einstein spaces with a conformal group . Res. Math. 56(2009), 421444.Google Scholar
Kühnel, W. and Rademacher, H.-B., Conformally Einstein product spaces . Differ. Geom. Appl. 49(2016), 6596.Google Scholar
Matveev, V. and Nikolayevsky, Y., A counterexample to Belgun-Moroianu conjecture . C. R. Math. Acad. Sci. Paris 353(2015), 455457.Google Scholar
Matveev, V. and Nikolayevsky, Y., Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties . Ann. Inst. Fourier (Grenoble) 67(2017), no. 2, 843862.Google Scholar
Merkulov, S. and Schwachhöfer, L., Classification of irreducible holonomies of torsion-free affine connections . Ann. Math. 150(1999), no. 1, 77149.Google Scholar
Moroianu, A., Conformally related Riemannian metrics with non-generic holonomy . J. Reine Angew. Math. 755(2019), 279292.Google Scholar
Moroianu, A. and Pilca, M., Einstein metrics on conformal products . Ann. Glob. Anal. Geom. 65(2024), 20.Google Scholar
Moroianu, A. and Pilca, M., Conformal product structures on compact Kähler manifolds . Adv. Math. 467(2025), Article no. 110181.Google Scholar
Moroianu, A. and Pilca, M., Conformal product structures on compact Einstein manifolds. Preprint, 2025. arXiv2504.07886.Google Scholar
Vaisman, I., Conformal foliations . Kodai Math. J. 2(1979), 2637.Google Scholar