Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-npccv Total loading time: 0.283 Render date: 2022-09-29T02:18:11.958Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Regularization of Subsolutions in Discrete Weak KAM Theory

Published online by Cambridge University Press:  20 November 2018

Patrick Bernard
Affiliation:
Département de mathématiques et applications, UMR CNRS 8553, Ecole Normale Supérieure, 45 rue d'Ulm, 75005, Paris, France, e-mail: patrick.bernard@ceremade.dauphine.fr
Maxime Zavidovique
Affiliation:
Institut de mathématiques de Jussieu, UMR CNRS 8553, Université Pierre et Marie Curie, Case 247, 4, Place Jussieu, UMR CNRS 7586, Paris, France, e-mail: zavidovique@math.jussieu.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We expose different methods of regularizations of subsolutions in the context of discrete weak $\text{KAM}$ theory that allow us to prove the existence and the density of ${{C}^{1,1}}$ subsolutions. Moreover, these subsolutions can be made strict and smooth outside of the Aubry set.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Ambrosio, L. and Dancer, N., Calculus of variations and partial differential equations. Topics on geometrical evolution problems and degree theory. Papers from the Summer School held in Pisa, September 1996. Springer-Verlag, Berlin, 2000.Google Scholar
[2] Bernard, P., Connecting orbits of time dependent Lagrangian systems. Ann. Inst. Fourier (Grenoble) 52(2002), no. 5, 15331568. http://dx.doi.org/10.5802/aif.1924 CrossRefGoogle Scholar
[3] Bernard, P., Existence of C1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann. Sci. École Norm. Sup. (4) 40(2007), no. 3, 445452.CrossRefGoogle Scholar
[4] Bernard, P., The dynamics of pseudographs in convex Hamiltonian systems. J. Amer. Math. Soc. 21(2008), no. 3, 615669. http://dx.doi.org/10.1090/S0894-0347-08-00591-2 http://dx.doi.org/10.1090/S0894-0347-08-00591-2 CrossRefGoogle Scholar
[5] Bernard, P., Lasry-Lions regularization and a lemma of Ilmanen. Rend. Semin. Mat. Univ. Padova 124(2010), 221229.Google Scholar
[6] Bernard, P. and Buffoni, B., Weak KAM pairs and Monge-Kantorovich duality. In: Asymptotic analysis and singularities—elliptic and parabolic PDEs and related problems, Adv. Stud. Pure Math., 4-27, Math. Soc. Japan, Tokyo, 2007, pp. 397420.Google Scholar
[7] Bernard, P. and Roquejoffre, J. M., Convergence to time-periodic solutions in time-periodic Hamilton–Jacobi equations on the circle. Comm. Partial Differential Equations 29(2004), no. 3–4, 457469. http://dx.doi.org/10.1081/PDE-120030404 CrossRefGoogle Scholar
[8] Cardaliaguet, P., Front propagation problems with nonlocal terms. II. J. Math. Anal. Appl. 260(2001), no. 5, 572601. http://dx.doi.org/10.1006/jmaa.2001.7483 Google Scholar
[9] Constantine, G. M. and Savits, T. H., A multivariate Faà di Bruno formula with applications. Trans. Amer. Math. Soc. 348(1996), no. 2, 503520. http://dx.doi.org/10.1090/S0002-9947-96-01501-2 http://dx.doi.org/10.1090/S0002-9947-96-01501-2 CrossRefGoogle Scholar
[10] Contreras, G. and Iturriaga, R., and Sanchez-Morgado, H., Weak solutions of the Hamilton-Jacobi equation for time periodic Lagrangians. preprint. http://www.cimat.mx/_gonzalo/papers/whj.pdf Google Scholar
[11] de Rham, G., Variétés différentiables. Formes, courants, formes harmoniques. Troisiàme édition revue et augmentée, Publications de l’Institut de Mathématique de l’Université de Nancago, III, Actualités Scientifiques et Industrielles, 1222b, Hermann, Paris, 1973.Google Scholar
[12] Fathi, A., Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327(1998), no. 3, 267270. http://dx.doi.org/10.1016/S0764-4442(98)80144-4 Google Scholar
[13] Fathi, A. and Mather, J., Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case. Bull. Soc. Math. France 128(2000), no. 3, 473483.Google Scholar
[14] Fathi, A. and Siconolfi, A., Existence of C1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155(2004), no. 2, 363388. http://dx.doi.org/10.1007/s00222-003-0323-6 CrossRefGoogle Scholar
[15] Fathi, A. and Zavidovique, M., Ilmanen's lemma on insertion of C1,1 functions. Rend. Semin. Mat. Univ. Padova 124(2010), 203219.Google Scholar
[16] Gomes, D. A., Viscosity solution method and the discrete Aubry-Mather problem. Discrete Contin. Dyn. Syst. 13(2005), no. 1, 103116. http://dx.doi.org/10.3934/dcds.2005.13.103 CrossRefGoogle Scholar
[17] Hirsch, M.W., Differential topology. Graduate Texts in Mathematics, 33, Springer-Verlag, New York, 1994.Google Scholar
[18] Ilmanen, T., The level-set flow on a manifold. In: Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, American Mathematical Society, Providence, RI, 1993, pp. 193204.CrossRefGoogle Scholar
[19] Zavidovique, M., Strict sub-solutions and Ma˜ñé potential in discrete weak KAM theory. Comment. Math. Helv. 87(2012), no. 1, 139. http://dx.doi.org/10.4171/CMH/247 CrossRefGoogle Scholar
[20] Zavidovique, M., Existence of C1,1 critical subsolutions in discrete weak KAM theory. J. Mod. Dyn. 4(2010), no. 4, 693714. http://dx.doi.org/10.3934/jmd.2010.4.693 http://dx.doi.org/10.3934/jmd.2010.4.693 CrossRefGoogle Scholar
You have Access
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Regularization of Subsolutions in Discrete Weak KAM Theory
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Regularization of Subsolutions in Discrete Weak KAM Theory
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Regularization of Subsolutions in Discrete Weak KAM Theory
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *