[4] Benedetto, R. L., Ingram, P., Jones, R., and Levy, A., Attracting cycles in p-adic dynamics and height bounds for post-critically finite maps. Duke Math. J.
163 no. 13 (2014), pp.2325–2356
http://dx.doi.org/10.1215/00127094-2804674
[7] Call, G. S. and Silverman, J. H., Canonical heights on varieties with morphisms,
Compositio Math.
89 (1993), pp. 163–205.

[10] Epstein, A. L., Integrality and rigidity for postcritically finite polynomials,With an appendix by Epstein and Bjorn Poonen.Bull. Lond. Math. Soc. 44(2012), no. 1, pp. 39–46. http://dx.doi.org/10.1112/blms/bdr059
[11] Favre, C. and Gauthier, T., Distribution of postcritically finite polynomials, arXiv:1302.0810. http://dx.doi.org/10.1007/s11856-015-1218-0
[12] Fornæss, E. and Sibony, N., Critically finite rational maps on P2. The Madison Symposium on Complex Analysis (Madison, WI, 1991), pp. 245–260, volume 137 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1992.

[13]Ingram, P., Variation of the canonical height for a family of polynomials,
J. Riene Ange. Math. (to appear).

[14] Ingram, P., A finiteness result for post–critically finite polynomials, Int. Math. Res. Not. 2012, no. 3, pp. 524–543.

[15] Ingram, P., Variation of the canonical height for polynomials in several variables, Int. Math. Res. Not. (to appear)doi: 10.1093/imrn/rnv121
[20] Levy, A., An algebraic proof of Thurston's rigidity for a polynomial (arXiv:1201.1969)
[21] Masser, D. and Wüstholz, G., Fields of large transcendence degree generated by values of elliptic
functions,
Invent. Math
72 (1983), pp. 407–464.http://dx.doi.org/10.1007/BF01398396
[26] Philippon, P., Sur des hauteurs alternativesI.,
Math. Ann.
289 (1991), no. 2, pp. 255–283.

[28] JSilverman, . H., Moduli Spaces and Arithmetic Dynamics, volume 30 of CRM Monograph Series.
AMS, 2012.

[30] Stein, W. A. et al., Sage Mathematics Software (Version 5.8–OSX–64 bit–10.8), The Sage Development Team, http://www.sagemath.org.
[32] Uchimura, K., Generalized Chebyshev maps of C2 and their perturbations. Osaka J. Math. 46(2009), no.4, pp.995–1017.

[34] Veselov, A., Integrable mappings and Lie algebras.
Dokl. Akad. Nauk SSSR
292 (1987), no.6 ,pp.1289–1291.

[36] Zhang, S., Small points and adelic metrics. J. Algebraic Geom.
4 (1995), no. 2, pp. 281–300.