Hostname: page-component-7d684dbfc8-kpkbf Total loading time: 0 Render date: 2023-09-25T00:48:59.878Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Rigidity and Height Bounds for Certain Post-critically Finite Endomorphisms of ℙN

Published online by Cambridge University Press:  20 November 2018

Patrick Ingram*
Colorado State University, Fort Collins, CO, USA e-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The morphism $f\,:\,{{\mathbb{P}}^{N}}\,\to \,{{\mathbb{P}}^{N}}$ is called post-critically finite $\left( \text{PCF} \right)$ if the forward image of the critical locus, under iteration of $f$ , has algebraic support. In the case $N\,=\,1$ , a result of Thurston implies that there are no algebraic families of PCF morphisms, other than a well-understood exceptional class known as the flexible Lattés maps. A related arithmetic result states that the set of PCF morphisms corresponds to a set of bounded height in the moduli space of univariate rational functions. We prove corresponding results for a certain subclass of the regular polynomial endomorphisms of ${{\mathbb{P}}^{N}}$ for any $N$ .

Research Article
Copyright © Canadian Mathematical Society 2016


[1]Baker, M. and DeMarco, L., Preperiodic points and unlikely intersections Duke Math. Journal. 159 (2011), no. 1, pp. 129. CrossRefGoogle Scholar
[2] Baker, M. andDeMarco, L., Special curves and postcritically-ûnite polynomials, Forum Math., Pi, 1 (2013), e3 (35 pages). CrossRefGoogle Scholar
[3] Bedford, E. and Jonsson, M., Dynamics of regular polynomial endomorphisms of Ck, Amer. J. Math. 122 (2000), pp. 153212. CrossRefGoogle Scholar
[4] Benedetto, R. L., Ingram, P., Jones, R., and Levy, A., Attracting cycles in p-adic dynamics and height bounds for post-critically finite maps. Duke Math. J. 163 no. 13 (2014), pp.23252356 CrossRefGoogle Scholar
[5] Benedetto, R. L., A Criterion for Potentially Good Reduction in Non-archimedean Dynamics. Acta Arith. 165 (2014), pp.251256. CrossRefGoogle Scholar
[6] Bost, J.-B., Gillet, H., and Soulé, C., Heights of projective varieties and positive Green forms J.Amer. Math. Soc. 7 (1994),no.pp.9031027. CrossRefGoogle Scholar
[7] Call, G. S. and Silverman, J. H., Canonical heights on varieties with morphisms Compositio Math 89 (1993), pp.163–205.Google Scholar
[8] DeMarco, L., Hruska, S. L., Axiom A polynomial skew products of Cz and their postcritical sets Ergodic Theory Dynam. Systems 28 (2008) pp. 17291748. CrossRefGoogle Scholar
[9] Dinh, T.-C., Sur les applications de Lattés de Pk , J. Math. Pures Appl. (9) 80 (2001), no. 6, pp. 577–592. CrossRefGoogle Scholar
[10] Epstein, A. L., Integrality and rigidity for postcritically finite polynomials,With an appendix by Epstein and Bjorn Poonen.Bull. Lond. Math. Soc. 44(2012), no. 1, pp.3946. CrossRefGoogle Scholar
[11] Favre, C. and Gauthier, T., Distribution of postcritically finite polynomials, arXiv:1302.0810. CrossRefGoogle Scholar
[12] Fornæss, E. and Sibony, N., Critically finite rational maps on P2. The Madison Symposium on Complex Analysis (Madison, WI, 1991), pp. 245260, volume 137 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1992.CrossRefGoogle Scholar
[13]Ingram, P., Variation of the canonical height for a family of polynomials J. Riene Ange. Math. (to appear).Google Scholar
[14] Ingram, P., A finiteness result for post–critically finite polynomials, Int. Math. Res. Not. 2012, no. 3, pp. 524–543.Google Scholar
[15] Ingram, P., Variation of the canonical height for polynomials in several variables, Int. Math. Res. Not. (to appear)doi:10.1093/imrn/rnv121 Google Scholar
[16] Jonsson, M., Some properties of z–critically ûnite holomorphic maps of P2. Ergodic Theory Dynam. Systems 18 (1998), no. 1, pp. 171–187. CrossRefGoogle Scholar
[17] M.Jonsson, , Dynamics of polynomial skew products on C2. Math. Ann. 314(1999), no.3 ,pp.403447. CrossRefGoogle Scholar
[18] Jouanolou, J.-P., Le formalisme du résultant. Adv. Math. 90 (1991), no. 2, pp. 117–263. CrossRefGoogle Scholar
[19] Koch, S., Teichmüller theory and critically unite endomorphisms. Adv. Math. 248(2013), pp. 573–617 CrossRefGoogle Scholar
[20] Levy, A., An algebraic proof of Thurston's rigidity for a polynomial (arXiv:1201.1969)Google Scholar
[21] Masser, D. and Wüstholz, G., Fields of large transcendence degree generated by values of elliptic functions Invent. Math 72 (1983), pp. 407464. CrossRefGoogle Scholar
[22] Minimair, M., MR package for Maple, 2007, Google Scholar
[23] Moriwaki, A., Arithmetic height functions over finitely generated fields, Invent. Math.140 (2000), no. 1, pp.101142. z. Google Scholar
[24] Rong, F., The Fatou set for critically finite maps. Proc. Amer. Math. Soc., 136 (2008), pp. 3621–3625. Google Scholar
[25] Rong, F., Lattés maps on P2. J. Math. Pures Appl. (9)93 (2010), no. 6, pp. 636650. CrossRefGoogle Scholar
[26] Philippon, P., Sur des hauteurs alternativesI. Math. Ann 289 (1991), no. 2, pp. 255283.CrossRefGoogle Scholar
[27] Silverman, J. H., The Arithmetic of Dynamical Systems, volume 241 of Graduate Texts in Mathematics. Springer, 2007. CrossRefGoogle Scholar
[28] JSilverman, . H., Moduli Spaces and Arithmetic Dynamics, volume 30 of CRM Monograph Series. AMS, 2012.CrossRefGoogle Scholar
[29] Silverman, J. H., An algebraic approach to certain cases of Thurston rigidity. Proc. Amer. Math. Soc.140 (2012), no.10 , pp. 34213434 CrossRefGoogle Scholar
[30] Stein, W. A. et al., Sage Mathematics Software (Version 5.8–OSX–64 bit–10.8), The Sage Development Team, Google Scholar
[31] Douady, A. and Hubbard, J., A proof of_urston's topological characterization of rational functions Acta Math. 171 (1993), pp. 263–297. CrossRefGoogle Scholar
[32] Uchimura, K., Generalized Chebyshev maps of C2 and their perturbations. Osaka J. Math. 46(2009), no.4, pp.995–1017.Google Scholar
[33] Ueda, T., Critical orbits of holomorphic maps on projective spaces. J. Geom. Anal. 8 (1998), Issue 4, pp. 319334. Google Scholar
[34] Veselov, A., Integrable mappings and Lie algebras. Dokl. Akad. Nauk SSSR 292 (1987), no.6 ,pp.12891291.Google Scholar
[35] Zdunik, A., Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent. Math. 99 (1990), no. h, pp.627649 CrossRefGoogle Scholar
[36] Zhang, S., Small points and adelic metrics. J. Algebraic Geom. 4 (1995), no. 2, pp. 281–300.Google Scholar