Skip to main content Accesibility Help
×
×
Home

Secant Spaces to Curves

  • Joachim von Zur Gathen (a1)
Extract

A classical question in algebraic geometry is whether a given projection of a projective space induces an isomorphism on a given closed subvariety. To answer it, one investigates secant lines to the subvariety. There has been a lot of recent activity in this field ([12], [14], [18], [21], [23]): see [14] and [12] for references).

An obvious generalization of the secant lines is provided by the secant r-planes, which intersect a given closed subvariety in r + 1 linearly independent points. The closure of the set of these secant r-planes is the secant variety, and the aim of this paper is to determine its rational equivalence class in the case of curves. There is an extensive classical literature about this problem.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Secant Spaces to Curves
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Secant Spaces to Curves
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Secant Spaces to Curves
      Available formats
      ×
Copyright
References
Hide All
1. Canuto, G., Associated curves and Pliicker formulas in Grassmannians, Invent. Math. 53(1979), 7790.
2. Castelnuovo, G., Una applicazione della geometria enumerativa alle curve algebriche, Rend. Circ. Mat. Palermo 3(1889), 2737.
3. Cayley, A., Mémoire sur les courbes à double courbure et les surfaces développables, J. de Math. Pures et Appl. 70 (1845), 245250; also Math. Papers 1, 207–211.
4. Cayley, A., On skew surfaces, otherwise scrolls, London Phil. Trans. 153(1863), 453483; also Math. Papers 5, 168–200.
5. Cremona, L., Note sur les cubiques gauches, Crelle J. F. reine und ang. Math. 60 (1862), 188191.
6. Giambelli, G. Z., Risoluzione delproblema generale numerativo per gli spazi plurisecanti di una curva algebrica, Mem. Ace. Torino 59(1908), 433508.
7. Griffiths, P. and Harris, J., Principles of algebraic geometry (John Wiley, New York, 1978).
8. Griffiths, P. and Harris, J., On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), 233272.
9. Hartshorne, R., Algebraic geometry (Springer Verlag, 1977).
10. Hilbert, D., Mathematical problems. Bull. AMS 8 (1901), 437479.
11. Hodge, W. and Pedoe, D., Methods of algebraic geometry (Cambridge, 1952).
12. Holme, A. and Roberts, J., Pinch-points and multiple locus of generic projections of singular varieties, Adv. Math. 33(1919), 212256.
13. Kleiman, S. L., The transversality of a general translate, Comp. Math. 28 (1974), 287297.
14. Kleiman, S. L., The enumerative theory of singularities, Proc. Nordic Summer School, Oslo (1976), 297396.
15. Kleiman, S. L., Problem 15. Rigorous foundation of Schubert's enumerative calculus, Proc. Symp. Pure Math., “Mathematical developments arising from the Hilbert problems”, 28(1916), 445482.
16. Kleiman, S. L. and Laksov, D., Schubert calculus, Amer. Math. Monthly 79(1972), 10611082.
17. Laksov, D., Algebraic cycles on Grassmann varieties, Adv. Math. 9 (1972), 267295.
18. Laksov, D., Secant bundles and Todd“s formula for the double points of maps into Pn, Proc. London Math. Soc. 37(1978), 120142.
19. Le Barz, P., Validité de certaines formules de géométrie énumérative, C. R. Acad. Se. Paris 289(1979), 755758.
20. Le Barz, P., Une courbe gauche avec —4 quadrisécantes, preprint, Université de Nice (1980).
21. Lluis, E., Variedades algebraicas con ciertas condiciones en sus tangentes. Bol. Soc. Mat. Mexicana 7(1962), 4756.
22. Macdonald, I. G., Some enumerative formulae for algebraic curves, Proc. Cambridge Phil. Soc. 54 (1958), 399416.
23. Peters, C. A. M. and Simonis, J., A secant formula, Quart. J. Math. Oxford 27(1976), 181189.
24. Piene, R., Numerical characters of a curve in projective n-space, Proc. Nordic Summer School, Oslo (1976), 475495.
25. Plucker, J., Théorie der algebraischen Curven, Bonn (1839).
26. Salmon, G., On the classification of curves of double curvature, Cambridge and Dublin Math. J. 5 (1850), 2346.
27. Salmon, G., On the degree of the surface reciprocal to a given one, Trans. Royal Irish Acad. Dublin 23(1856), 461488.
28. Severi, F., Sopra alcune singolarità delle curve di un iperspazio, Mem. Ace. Torino 57(1902), 81114.
29. Shafarevitch, I. R., Basic algebraic geometry (Springer Verlag, 1974).
30. Vainsencher, I., Counting divisors with prescribed multiplicities, Trans. AMS 267 (1981), 399422.
31. Zeuthen, H. G., Sur les singularités ordinaires des courbes géométriques à double courbure, C. R. Acad. Se. Paris 67 (1868), 225229.
32. Zeuthen, H. G., Sur les singularités ordinaires d'une courbe gauche et d'une surface développable, Ann. di Mat. 3(1870), 175217.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed