Skip to main content
×
×
Home

Two-color Soergel Calculus and Simple Transitive 2-representations

  • Marco Mackaaij (a1) and Daniel Tubbenhauer (a2)
Abstract

In this paper, we complete the ADE-like classification of simple transitive 2-representations of Soergel bimodules in finite dihedral type, under the assumption of gradeability. In particular, we use bipartite graphs and zigzag algebras of ADE type to give an explicit construction of a graded (non-strict) version of all these 2-representations.

Moreover, we give simple combinatorial criteria for when two such 2-representations are equivalent and for when their Grothendieck groups give rise to isomorphic representations.

Finally, our construction also gives a large class of simple transitive 2-representations in infinite dihedral type for general bipartite graphs.

Copyright
Footnotes
Hide All

Author M. M. is partially supported by FCT/Portugal through the project UID/MAT/04459/2013

Footnotes
References
Hide All
[And03] Andersen, H. H., The strong linkage principle for quantum groups at roots of 1 . J. Algebra 260(2003), 215. Special issue celebrating the 80th birthday of Robert Steinberg. https://doi.org/10.1016/S0021-8693(02)00618-X.
[AT17] Andersen, H. H. and Tubbenhauer, D., Diagram categories for U q -tilting modules at roots of unity . Transform. Groups 22(2017), 2989 https://doi.org/10.1007/s00031-016-9363-z.
[Bén67] Bénabou, J., Introduction to bicategories. In: Reports of the Midwest Category Seminar, Springer, Berlin, 1967, pp. 1–77.
[BH12] Brouwer, A. E. and Haemers, W. H., Spectra of graphs. Universitext, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1939-6.
[Bor94] Borceux, F., Handbook of categorical algebra. 1. Encyclopedia of Mathematics and its Applications, 50, Cambridge University Press, Cambridge, 1994.
[Eli16] Elias, B., The two-color Soergel calculus Compos. Math. 152(2016), 327–398. https://doi.org/10.1112/S0010437X15007587.
[Eli17] Elias, B., Quantum Satake in type A. Part I . J. Comb. Algebra 1(2017), 63125. https://doi.org/10.4171/JCA/1-1-4.
[GM03] Gelfand, S. I. and Manin, Y. I., Methods of homological algebra. Second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-662-12492-5.
[GTW17] Gadbled, A., Thiel, A.-L., and Wagner, E., Categorical action of the extended braid group of affine type A . Commun. Contemp. Math. 19(2017),. 1650024, 39. https://doi.org/10.1142/S0219199716500243.
[HK01] Huerfano, R. S. and Khovanov, M., A category for the adjoint representation . J. Algebra 246(2001), 514542. https://doi.org/10.1006/jabr.2001.8962.
[Kho05] Khovanov, M., Categorifications of the colored Jones polynomial . J. Knot Theory Ramifications 14(2005), 111130. https://doi.org/10.1142/S0218216505003750.
[KJO02] Kirillov, A. Jr. and Ostrik, V., On a q-analogue of the McKay correspondence and the ADE classification of sl 2 conformal field theories . Adv. Math. 171(2002), 183227. https://doi.org/10.1006/aima.2002.2072.
[KMMZ16] Kildetoft, T., Mackaay, M., Mazorchuk, V., and Zimmermann, J., Simple transitive 2-representations for some 2-categories of Soergel bimodules . J. Pure Appl. Algebra 221(2017), no. 3, 565587. https://doi.org/10.1016/j.jpaa.2016.07.006.
[KS02] Khovanov, M. and Seidel, P., Quivers, Floer cohomology, and braid group actions . J. Amer. Math. Soc. 15(2002), 203271. https://doi.org/10.1090/S0894-0347-01-00374-5.
[Lei98] Leinster, T., Basic bicategories. 1998. arxiv:math/9810017.
[Lus83] Lusztig, G., Some examples of square integrable representations of semisimple p-adic groups . Trans. Amer. Math. Soc. 277(1983), 623653. https://doi.org/10.2307/1999228.
[ML98] Mac Lane, S., Categories for the working mathematician. Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998.
[MM11] Mazorchuk, V. and Miemietz, V., Cell 2-representations of finitary 2-categories . Compos. Math. 147(2011), 15191545. https://doi.org/10.1112/S0010437X11005586.
[MM16a] Mazorchuk, V. and Miemietz, V., Endomorphisms of cell 2-representations . Int. Math. Res. Not. IMRN 24(2016), 74717498. https://doi.org/10.1093/imrn/rnw025.
[MM16b] Mazorchuk, V. and Miemietz, V., Transitive 2-representations of finitary 2-categories . Trans. Amer. Math. Soc. 368(2016), 76237644. https://doi.org/10.1090/tran/6583.
[MM17] Mackaay, M. and Mazorchuk, V., Simple transitive 2-representations for some 2-subcategories of Soergel bimodules . J. Pure Appl. Algebra 221(2017), 565587. https://doi.org/10.1016/j.jpaa.2016.07.006.
[MMMT16] Mackaay, M., Mazorchuk, V., Miemietz, V., and Tubbenhauer, D., Simple transitive 2-representations via (co)algebra 1-morphisms. Indiana Univ. Math. J., to appear, 2016. arxiv:1612.06325.
[MMMT18] Mackaay, M., Mazorchuk, V., Miemietz, V., and Tubbenhauer, D., Trihedral Soergel bimodules. 2018. arxiv:1804.08920.
[Ost03] Ostrik, V., Module categories, weak Hopf algebras and modular invariants . Transform. Groups 8(2003), 177206. https://doi.org/10.1007/s00031-003-0515-6.
[Pow89] Power, A. J., A general coherence result . J. Pure Appl. Algebra 57(1989), 165173. https://doi.org/10.1016/0022-4049(89)90113-8.
[Saw06] Sawin, S. F., Quantum groups at roots of unity and modularity . J. Knot Theory Ramifications 15(2006), 12451277. https://doi.org/10.1142/S0218216506005160.
[Sch73] Schwenk, A. J., Almost all trees are cospectral. In: New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich., 1971), Academic Press, New York, 1973, pp. 275–307.
[Smi70] Smith, J. H., Some properties of the spectrum of a graph. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), Gordon and Breach, New York, 1970, pp. 403–406.
[Wei94] Weibel, C. A., An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9781139644136.
[Wen87] Wenzl, H., On sequences of projections . C. R. Math. Rep. Acad. Sci. Canada 9(1987), 59.
[Zim17] Zimmermann, J., Simple transitive 2-representations of Soergel bimodules in type B 2 . J. Pure Appl. Algebra 221(2017), 666690. https://doi.org/10.1016/j.jpaa.2016.07.011.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed