Skip to main content Accesibility Help
×
×
Home

Unbounded Fredholm Operators and Spectral Flow

  • Bernhelm Booss-Bavnbek (a1), Matthias Lesch (a2) and John Phillips (a3)
Abstract

We study the gap (= “projection norm” = “graph distance”) topology of the space of all (not necessarily bounded) self-adjoint Fredholm operators in a separable Hilbert space by the Cayley transformand direct methods. In particular, we show the surprising result that this space is connected in contrast to the bounded case. Moreover, we present a rigorous definition of spectral flow of a path of such operators (actually alternative but mutually equivalent definitions) and prove the homotopy invariance. As an example, we discuss operator curves on manifolds with boundary.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Unbounded Fredholm Operators and Spectral Flow
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Unbounded Fredholm Operators and Spectral Flow
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Unbounded Fredholm Operators and Spectral Flow
      Available formats
      ×
Copyright
References
Hide All
[1] Atiyah, M. F. and Singer, I. M., Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37(1969), 526
[2] Booss-Bavnbek, B., Unique continuation property for Dirac operators, revisited. Contemp.Math. 258(2000), 2132.
[3] Booss-Bavnbek, B. and Furutani, K., The Maslov index: a functional analytical definition and the spectral flow formula. Tokyo J. Math. 21(1998), 134.
[4] Booss-Bavnbek, B., Lesch, M. and Phillips, J., Spectral flow of paths of self–adjoint Fredholm operators. Nuclear Physics B 104(2002), 177180.
[5] Booss-Bavnbek, B. and Wojciechowski, K. P., Elliptic Boundary Problems for Dirac Operators. Birkhäuser, Boston, (1993).
[6] Cordes, H. O. and Labrousse, J. P., The invariance of the index in the metric space of closed operators. J. Math. Mech. 12(1963), 693719.
[7] Douglas, R. G. and Wojciechowski, K. P., Adiabatic limits of the η-invariants. The odd-dimensional Atiyah–Patodi–Singer problem. Comm.. Math. Phys. 142(1991), 139168.
[8] Dunford, N. and Schwarz, J. T., Linear Operators. Interscience Publication, 1958. ReprintedWiley Classics Library, 1988.
[9] Furutani, K. and Otsuki, N., Maslov index in the infinite dimension and a splitting formula for a spectral flow. Japan J. Math. 28(2003), 215243.
[10] Grubb, G., Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems. Ark.Mat. 37(1999), 4586.
[11] Himpel, B., Kirk, P. and Lesch, M., Calderón projector for the Hessian of the perturbed Chern-Simons function on a 3-manifold with boundary. Proc. LondonMath. Soc. 3 89(2004), 241272.
[12] Kato, T., Perturbation Theory for Linear Operators. Second edition. Grundlehren der MathematischenWissenschaften 132, Springer–Verlag, Berlin, 1976.
[13] Kirk, P. and Lesch, M., The η-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary. ForumMath. 16 (2004), 553629.
[14] Lesch, M., The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators. Contemp.Math. 366(2005), 193224.
[15] Nicolaescu, L., On the space of Fredholm operators. math.DG/0005089 (2000).
[16] Phillips, J., Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39(1996), 460467.
[17] Riesz, F. and Nagy, B., Functional Analysis. Dover Publications, New York, 1990.
[18] Robbin, J. and Salamon, D., The spectral flow and the Maslov index. Bull. LondonMath. Soc. 27(1995), 133.
[19] Rudin, W., Functional Analysis. Second edition. McGraw-Hill, New York, 1991.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed