Skip to main content
×
×
Home

Uniform Convergence of Trigonometric Series with General Monotone Coefficients

  • Mikhail Dyachenko (a1), Askhat Mukanov (a2) (a3) and Sergey Tikhonov (a4) (a5)
Abstract

We study criteria for the uniform convergence of trigonometric series with general monotone coefficients. We also obtain necessary and sufficient conditions for a given rate of convergence of partial Fourier sums of such series.

Copyright
Footnotes
Hide All

This research was partially supported by RFFI no. 16-01-00350, MTM 2014-59174-P, 2014 SGR 289, the grants of Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (projects AP05131707, AP05133301), and by the CERCA Programme of the Generalitat de Catalunya.

Footnotes
References
Hide All
[1] Bernstein, S., Sur l’ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné . Mémoires de l’Académie Royale de Belgique (2) 4(1912), 1104.
[2] Boas , R. P. Jr., Integrability theorems for trigonometric transforms. Ergebnisse der Mathematik und ihrer Grenzgebiete, 38, Springer-Verlag, New York, 1967.
[3] Chaundy, T. W. and Jolliffe, A. E., The uniform convergence of a certain class of trigonometrical series . Proc. London Math. Soc. (2) 15(1916), 214216.
[4] Dyachenko, M. and Tikhonov, S., Integrability and continuity of functions represented by trigonometric series: coefficients criteria . Studia Math. 193(2009), 285306. https://doi.org/10.4064/sm193-3-5.
[5] Dyachenko, M. and Tikhonov, S., General monotone sequences and convergence of trigonometric series. In: Topics in classical analysis and applications in honor of Daniel Waterman, World Sci., Hackensack, NJ, 2008, pp. 88–101.
[6] Dyachenko, M. and Tikhonov, S., Smoothness properties of functions with general monotone Fouier coefficients . J. Fourier Anal. Appl.(2017). https://doi.org/10.1007/s00041-017-9553-7.
[7] Fekete, M., Proof of three propositions of Paley . Bull. Amer. Math. Soc. 41(1935), 138144. https://doi.org/10.1090/S0002-9904-1935-06036-7.
[8] Feng, L., Totik, V., and Zhou, S. P., Trigonometric series with a generalized monotonicity condition . Acta Math. Sin. (Engl. Ser.) 30(2014), 8, 12891296. https://doi.org/10.1007/s10114-014-3496-6.
[9] Flett, T. M., On the degree of approximation to a function by the Cesaro means of its Fourier series . Quart. J. Math. Oxford Ser. (2) 7(1956), 8195. https://doi.org/10.1093/qmath/7.1.81.
[10] Iosevich, A. and Liflyand, E., Decay of the Fourier transform. In: Analytic and geometric aspects. Birkhäuser/Springer, Basel, 2015.
[11] Lebesgue, H., Sur la représentation trigonométrique approchée des fonctions satisfaisant á une condition de Lipschitz . Bull. Soc. Math. France 38(1910), 184210. https://doi.org/10.24033/bsmf.859.
[12] Leindler, L., On the uniform convergence and boundedness of a certain class of sine series . Anal. Math. 27(2001), 279285. https://doi.org/10.1023/A:1014320328217.
[13] Liflyand, E. and Tikhonov, S., A concept of general monotonicity and applications . Math. Nachr. 284(2011), 10831098. https://doi.org/10.1002/mana.200810262.
[14] Rudin, W., Some theorems on Fourier coefficients . Proc. Amer. Math. Soc. 10(1959), 855859. https://doi.org/10.1090/S0002-9939-1959-0116184-5.
[15] Salem, R. and Zygmund, A., The approximation by partial sums of Fourier series . Trans. Amer. Math. Soc. 59(1946), 1422. https://doi.org/10.1090/S0002-9947-1946-0015538-0.
[16] Shapiro, H. S., Extremal problems for polynomials and power series. Thesis for S.M. Degree, Massachusetts Institute of Technology, 1951.
[17] Tikhonov, S., Trigonometric series with general monotone coefficients . J. Math. Anal. Appl. 326(2007), 721735. https://doi.org/10.1016/j.jmaa.2006.02.053.
[18] Tikhonov, S., Best approximation and moduli smoothness: computation and equivalence theorems . J. Approx. Theory 153(2008), 1939. https://doi.org/10.1016/j.jat.2007.05.006.
[19] Zhou, S. P., Zhou, P., and Yu, D. S., Ultimate generalization to monotonicity for uniform convergence of trigonometric series . Sci. China Math. 53(2010), 18531862. https://doi.org/10.1007/s11425-010-3138-0.
[20] Zygmund, A., Trigonometric series. Vol. I, II. Third ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed