Published online by Cambridge University Press: 20 November 2018
Let   $A$  be a separable amenable purely infinite simple
 $A$  be a separable amenable purely infinite simple   ${{C}^{*}}$ -algebra which satisfies the Universal Coefficient Theorem. We prove that
 ${{C}^{*}}$ -algebra which satisfies the Universal Coefficient Theorem. We prove that   $A$  is weakly semiprojective if and only if
 $A$  is weakly semiprojective if and only if   ${{K}_{i}}(A\text{)}$  is a countable direct sum of finitely generated groups
 ${{K}_{i}}(A\text{)}$  is a countable direct sum of finitely generated groups   $\left( i\,=\,0,\,1 \right)$ . Therefore, if
 $\left( i\,=\,0,\,1 \right)$ . Therefore, if   $A$  is such a
 $A$  is such a   ${{C}^{*}}$ -algebra, for any
 ${{C}^{*}}$ -algebra, for any   $\varepsilon \,>\,0$  and any finite subset
 $\varepsilon \,>\,0$  and any finite subset   $\mathcal{F}\,\subset \,A$  there exist
 $\mathcal{F}\,\subset \,A$  there exist   $\delta \,>\,0$  and a finite subset
 $\delta \,>\,0$  and a finite subset   $G\,\subset \,A$  satisfying the following: for any contractive positive linear map
 $G\,\subset \,A$  satisfying the following: for any contractive positive linear map   $L\,:\,A\,\to \,B$  (for any
 $L\,:\,A\,\to \,B$  (for any   ${{C}^{*}}$ -algebra
 ${{C}^{*}}$ -algebra   $B$ ) with
 $B$ ) with   $||L\left( ab \right)\,-\,L\left( a \right)L\left( b \right)||\,<\,\delta$  for
 $||L\left( ab \right)\,-\,L\left( a \right)L\left( b \right)||\,<\,\delta$  for   $a,\,b\,\in \,\mathcal{G}$  there exists a homomorphism
 $a,\,b\,\in \,\mathcal{G}$  there exists a homomorphism   $h:\,A\,\to \,B$  such that
 $h:\,A\,\to \,B$  such that   $||\,h\left( a \right)\,-\,L\left( a \right)||\,<\,\varepsilon$  for
 $||\,h\left( a \right)\,-\,L\left( a \right)||\,<\,\varepsilon$  for   $a\,\in \,\mathcal{F}$ .
 $a\,\in \,\mathcal{F}$ .
 . 
               J. Reine Angew. Math. 
               464(1995), 173–186.Google Scholar
. 
               J. Reine Angew. Math. 
               464(1995), 173–186.Google Scholar . C. R. Math. Rep. Acad. Sci. Canada 
               16(1994), no. 1, 31–36.Google Scholar
. C. R. Math. Rep. Acad. Sci. Canada 
               16(1994), no. 1, 31–36.Google Scholar