Hostname: page-component-857557d7f7-ms8jb Total loading time: 0 Render date: 2025-11-25T08:26:23.979Z Has data issue: false hasContentIssue false

Cartan decomposition for $\mathrm {Sp}(1,n)$ and some applications to group dynamics

Published online by Cambridge University Press:  28 October 2025

Angel Cano*
Affiliation:
UCIM, Universidad Nacional Autónoma de México, Mexico e-mail: hector.castro@im.unam.mx
Hector Abrahan Castro Morales
Affiliation:
UCIM, Universidad Nacional Autónoma de México, Mexico e-mail: hector.castro@im.unam.mx

Abstract

In this article, we present an elementary proof of the Cartan decomposition theorem for the group $ \mathrm {Sp}(1, n) $. As an application, we determine the largest regular domain for discrete quaternionic hyperbolic groups acting on $ \mathbb {HP}^n $. Furthermore, we demonstrate that Bers’ simultaneous uniformization and Köebe’s retrosection theorem fail to hold for higher-dimensional quaternionic Kleinian groups.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The research of A.C. was partially supported by SECIHTI-SNI 104023 and PAPIIT-UNAM IN112424.

References

Abikoff, W., The bounded model for hyperbolic 3-space and a quaternionic uniformization theorem . Math. Scand. 54(1984), no. 1, 516.Google Scholar
Ahlfors, L. V., in: Chavel, I. and Farkas, H. M. (eds.), Mobius transformations and Clifford numbers, differential geometry and complex analysis. Springer-Verlag, New York, NY, 1985.Google Scholar
Bers, L., Simultaneous uniformization . Bull. Amer. Math. Soc. 66(1960), 9497.Google Scholar
Blyth, T. S., Module theory: An approach to linear algebra. 2nd ed., Oxford University Press, Oxford, New York, 1990.Google Scholar
Borel, A., Commensurability classes and volumes of hyperbolic 3-manifolds . Annali della Scuola Normale Superiore di Pisa—Classe di Scienze 8(1981), no. 1, 133.Google Scholar
Cano, A., Schottky groups can not act on ${\mathbb{P}}_{\mathbb{C}}^{2n}$ as subgroups of $\mathrm{PSL}_{2n+1}(\mathbb{C})$ . Bull Braz Math Soc., New Series 39(2008), 573586.Google Scholar
Cano, A., Loeza, L., and Ucan-Puc, A., Projective cyclic groups in higher dimensions . Linear Algebra Appl. 531(2017), no. 15, 169209.Google Scholar
Chen, S. S. and Greenberg, L., Hyperbolic spaces . In: L. V. Ahlfors, I. Kra, B. Maskit, and L. Nirenberg (eds.), Contributions to analysis, Academic Press, New York, NY, 1974, pp. 4987.Google Scholar
Conze, J. P. and Guivarc’h, Y., Limit sets of groups of linear transformations . Sankhya, Indian J. Stat., Series A 62(2000), no. 3, 367385.Google Scholar
Coxeter, H. S. M., Projective geometry. Springer, New York, 1987.Google Scholar
Dam, E. B., Koch, M., and Lillholm, M., Quaternions, interpolation and animation. University of Copenhagen, Denmark, 1998. Technical Report DIKU-TR-98/5 Department of Computer Science, Universitetsparken 1, DK-2100 Kbh.Google Scholar
Díaz, J. P., Verjovsky, A., and Vlacci, F., Quaternionic Kleinian modular groups and arithmetic hyperbolic orbifolds over the quaternions . Geom. Dedicata 192(2018), 127155.Google Scholar
Drutu, C. and Kapovich, M., Geometric group theory. Vol. 63, American Mathematical Society, Colloquium Publications, Providence, RI, 2018.Google Scholar
Dutta, S., Gongopadhyay, K., and Tejbir, S., Limit sets of cyclic quaternionic Kleinian groups . Geom. Dedicata 217(2023), 61.Google Scholar
Farenick, D. R. and Pidkowich, B. A. F., The spectral theorem in quaternions . Linear Algebra Appl. 371(2003), 75102.Google Scholar
Frances, C., Lorentzian Kleinian groups . Comment. Math. Helv. 80(2005), no. 4, 883910.Google Scholar
Green, J., On the structure of semigroups . Ann. Math. 54(1951), 163172.Google Scholar
Hanson, A. J., Visualizing quaternions, Morgan Kaufmann, San Francisco, CA, 2006.Google Scholar
Holod, P. I. and Klimyk, A. U., On representations of the groups Sp(n, 1) and Sp(n) . Reports Math. Phys. 21(1985), no. 1, 127142.Google Scholar
Kim, I. and Parker, J. R., Geometry of quaternionic hyperbolic manifolds . Math. Proc. Camb. Philos. Soc. 135(2003), no. 2, 291320.Google Scholar
Klingler, B., Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes . Comment. Math. Helv. 76(2001), no. 2, 200217.Google Scholar
Koebe, P., Über die Uniformisierung der algebraischen Kurven I . Math. Ann. 67(1909), 145224.Google Scholar
Maclachlan, C. and Reid, A. W., The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, Springer-Verlag, New York, 2011.Google Scholar
Maskit, B., Kleinian groups, Springer, Berlin, 1988.Google Scholar
Mok, N. and Yeung, S. K., Geometric realizations of uniformization of conjugates of Hermitian locally symmetric manifolds complex analysis and geometry . In: V. Ancona and A. Silva (eds.), Complex analysis and geometry, The University Series in Mathematics, Plenum Press, New York, NY, 1993, pp. 253270.Google Scholar
Mumford, D., Series, C., and Wright, D., Indra’s pearls: The vision of Felix Klein, Cambridge University Press, Cambridge, New York, 2002.Google Scholar
Rodman, L., Topics in quaternion linear algebra, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2014.Google Scholar
Zhang, F., Quaternions and matrices of quaternions . Linear Algebra Appl. 251(1997), 2157.Google Scholar