Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-19T14:24:51.770Z Has data issue: false hasContentIssue false

Moduli of local uniform rotundity for convex bodies in normed spaces

Published online by Cambridge University Press:  10 April 2025

Carlo Alberto De Bernardi*
Affiliation:
Dipartimento di Matematica per le Scienze economiche, finanziarie ed attuariali, Università Cattolica del Sacro Cuore, Milano 20123, Italy
Libor Veselý
Affiliation:
Dipartimento di Matematica, Università degli Studi, Milano 20133, Italy e-mail: libor.vesely@unimi.it

Abstract

Let C be a convex body (i.e., a proper closed convex subset with nonempty interior) in a normed space X. We consider four moduli of local uniform rotundity for C at a given point $x\in \partial C$, that extend in a natural way the corresponding notions for the unit ball $B_X$, and we prove that they all coincide. This extends a known result of J. Daneš from 1976 concerning the particular case when $C=B_X$.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The research of the first author was supported by the INdAM - GNAMPA Project, CUP E53C23001670001, and by MICINN project PID2020-112491GB-I00 (Spain). The research of the second author was supported by the INdAM - GNAMPA Project, CUP E53C23001670001, and by the University of Milan, Research Support Plan PSR 2022.

References

Balashov, M. V. and Repovš, D., Uniformly convex subsets of the Hilbert space with modulus of convexity of the second order . J. Math. Anal. Appl. 377(2011), 754761.Google Scholar
Balashov, M. V. and Repovš, D., Weakly convex sets and modulus of nonconvexity . J. Math. Anal. Appl. 371(2010), 113127.Google Scholar
Balashov, M. V. and Repovš, D., Uniform convexity and the splitting problem for selections . J. Math. Anal. Appl. 360(2009), 307316.Google Scholar
Buĭ-Min, Č. and Gurariĭ, V. I., Certain characteristics of normed spaces and their application to the generalization of Parseval’s equality to Banach spaces . Teor. Funkciĭ Funkcional. Anal. i Priložen. 8(1969), 7491.Google Scholar
Daneš, J., On local and global moduli of convexity . Comment. Math. Univ. Carolinae 17(1976), 413420.Google Scholar
Day, M. M., Uniform convexity in factor and conjugate spaces . Ann. Math. (2) 45(1944), 375385.Google Scholar
De Bernardi, C. A. and Veselý, L., Rotundity properties, and non-extendability of Lipschitz quasiconvex functions . J. Convex Anal. 30(2023), 329342.Google Scholar
De Bernardi, C. A. and Veselý, L., On extension of uniformly continuous quasiconvex functions . Proc. Amer. Math. Soc. 151(2023), 17051716.Google Scholar
De Bernardi, C. A. and Veselý, L., Moduli of uniform convexity for convex sets . Arch. Math. 123(2024), 413422.Google Scholar
De Bernardi, C. A. and Veselý, L., Tilings of normed spaces . Can. J. Math. 69(2017), 321337.Google Scholar
De Bernardi, C. A., A note on point-finite coverings by balls . Proc. Amer. Math. Soc. 149(2021), 34173424.Google Scholar
De Bernardi, C. A., Somaglia, J., and Veselý, L., Star-finite coverings of Banach spaces . J. Math. Anal. Appl. 491(2020), 124384, 21 pp.Google Scholar
Klee, V. L., Convex sets in linear spaces . Duke Math. J. 18(1951), 443466.Google Scholar
Klee, V. L., Maluta, E., and Zanco, C., Uniform properties of collections of convex bodies . Math. Ann. 291(1991), 153177.Google Scholar
Klee, V. L., Maluta, E., and Zanco, C., Tiling with smooth and rotund tiles . Fund. Math. 126(1986), 269290.Google Scholar
Lindenstrauss, J. and Tzafriri, L., Classical banach spaces II. Function spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 97, Springer-Verlag, Berlin, 1979.Google Scholar
Zanco, C. and Zucchi, A., Moduli of rotundity and smoothness for convex bodies . Boll. Unione Mat. Ital. 7(1993), 833855.Google Scholar