Skip to main content
×
×
Home

Actions of Semitopological Groups

  • Jan van Mill (a1) and Vesko M. Valov (a2)
Abstract

We investigate continuous transitive actions of semitopological groups on spaces, as well as separately continuous transitive actions of topological groups.

Copyright
Footnotes
Hide All

Author J. v. M. is pleased to thank the Department of Mathematics at Nipissing University for generous hospitality and support. Author V. M. V. was partially supported by NSERC Grant 261914-13.

Footnotes
References
Hide All
[1] Arens, R., Topologies for homeomorphism groups . Amer. J. Math. 68(1946), 593610. https://doi.org/10.2307/2371787.
[2] Arhangel’skii, A. and Reznichenko, E., Paratopologivcal and semitopological groups versus topological groups . Topology Appl. 151(2005), 107119. https://doi.org/10.1016/j.topol.2003.08.035.
[3] Arhangel’skii, A. and Tkachenko, M., Topological groups and related structures . Atlantis Studies in Mathematics, 1. Atlantis Press, Paris; World Scientific, Hackensack, NJ, 2008.
[4] Chatyrko, V. and Kozlov, K., Topological transformation groups and Dugundji compact Hausdorff spaces . (Russian) Mat. Sb. 201(2010), no. 1, 103128.
[5] Chatyrko, V. and Kozlov, K., The maximal G-compactifications of G-spaces with special actions . In: Proceedings of the Ninth Prague Topological Symposium (2001), Topol. Atlas, North Bay, ON, 2002, pp. 1521.
[6] Engelking, R., General topology. Second ed, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
[7] Kucharski, A., Plewik, Sz., and Valov, V., Skeletally Dugundji spaces . Central Eur. J. Math. 11(2013), 19491959.
[8] Haydon, R., On a problem of Pelczynski: Milutin spaces, Dugundji spaces and AE(0–dim) . Studia Math. 52(1974), 2331. https://doi.org/10.4064/sm-52-1-23-31.
[9] Mioduszewski, J. and Rudolf, L., H-closed and extremally disconnected Hausdorff spaces . Dissertationes Math. Rozprawy Mat. 66(1969).
[10] Pełczyński, A., Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions . Dissert. Math. 58(1968), 189.
[11] Sanchis, M. and Tkachenko, M., Totally Lindeöf and totally 𝜔-narrow semitopological groups . Topology Appl. 155(2008), no. 4, 322334. https://doi.org/10.1016/j.topol.2007.05.017.
[12] Teleman, S., Sur la représentation linéaire des groupes topologiques . Ann. Sci. Ecole Norm. Sup. 74(1957), 319339. https://doi.org/10.24033/asens.1060.
[13] Uspenskij, V., Topological groups and Dugundji compact spaces . (Russian) Mat. Sb. 180(1989), no. 8, 10921118. 1151.
[14] Uspenskij, V., Compact quotient spaces of topological groups and Haydon spectra . (Russian) Mat. Zametki 42(1987), no. 4, 594602.
[15] Veličko, N., A remark on plumed spaces . (Russian) Czechoslovak Math. J. 25(100)(1975), 819.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed